## Emma Lovell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6715190/publications.pdf Version: 2024-02-01



EMMALOVELL

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy and Environmental Science, 2018, 11, 1898-1910.                                                                           | 15.6 | 192       |
| 2  | A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy and Environmental Science, 2021, 14, 865-872.                                                                                                          | 15.6 | 164       |
| 3  | Nitrate reduction to ammonium: from CuO defect engineering to waste<br>NO <sub>x</sub> -to-NH <sub>3</sub> economic feasibility. Energy and Environmental Science, 2021, 14,<br>3588-3598.                                                 | 15.6 | 161       |
| 4  | A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy and Environment, 2017, 2, 204-217.                                                                                                                          | 4.7  | 153       |
| 5  | Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Longâ€lived Charges Applied in<br>Selective Photocatalytic CO <sub>2</sub> Reduction to CH <sub>4</sub> . Angewandte Chemie -<br>International Edition, 2021, 60, 8455-8459. | 7.2  | 152       |
| 6  | Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane. Chemical Engineering Journal, 2018, 352, 572-580.                                                                | 6.6  | 144       |
| 7  | Electroreduction of CO <sub>2</sub> to CO on a Mesoporous Carbon Catalyst with Progressively<br>Removed Nitrogen Moieties. ACS Energy Letters, 2018, 3, 2292-2298.                                                                         | 8.8  | 129       |
| 8  | Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and<br>Copper-Nickel/zeolite catalysts. Bioresource Technology, 2019, 279, 404-409.                                                              | 4.8  | 94        |
| 9  | Modulating Activity through Defect Engineering of Tin Oxides for Electrochemical CO <sub>2</sub><br>Reduction. Advanced Science, 2019, 6, 1900678.                                                                                         | 5.6  | 92        |
| 10 | CO2 reforming of methane over MCM-41-supported nickel catalysts: altering support acidity by one-pot synthesis at room temperature. Applied Catalysis A: General, 2014, 473, 51-58.                                                        | 2.2  | 82        |
| 11 | Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chemical Engineering Journal, 2021, 403, 126413.                                                                                                                     | 6.6  | 79        |
| 12 | Enhancing Ni-SiO 2 catalysts for the carbon dioxide reforming of methane:<br>Reduction-oxidation-reduction pre-treatment. Applied Catalysis B: Environmental, 2016, 199, 155-165.                                                          | 10.8 | 71        |
| 13 | Mixedâ€Metal MOFâ€74 Templated Catalysts for Efficient Carbon Dioxide Capture and Methanation.<br>Advanced Functional Materials, 2021, 31, 2007624.                                                                                        | 7.8  | 65        |
| 14 | Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy<br>Conversion Reactions. Advanced Materials, 2021, 33, e2102801.                                                                         | 11.1 | 64        |
| 15 | Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame<br>Spray Pyrolysis. Molecules, 2015, 20, 4594-4609.                                                                                     | 1.7  | 57        |
| 16 | Low-Temperature CO <sub>2</sub> Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic<br>System. ACS Sustainable Chemistry and Engineering, 2020, 8, 1888-1898.                                                                   | 3.2  | 54        |
| 17 | Uncovering Atomic cale Stability and Reactivity in Engineered Zinc Oxide Electrocatalysts for Controllable Syngas Production. Advanced Energy Materials, 2020, 10, 2001381.                                                                | 10.2 | 51        |
| 18 | Oxygen-Vacancy Engineering of Cerium-Oxide Nanoparticles for Antioxidant Activity. ACS Omega, 2019,<br>4, 9473-9479.                                                                                                                       | 1.6  | 47        |

Emma Lovell

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2019, 140, 148-160.                                              | 2.6  | 46        |
| 20 | Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis.<br>Journal of Energy Chemistry, 2021, 59, 108-125.                                                                                            | 7.1  | 46        |
| 21 | Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO2. Progress in<br>Natural Science: Materials International, 2018, 28, 168-177.                                                                              | 1.8  | 44        |
| 22 | Plasmonic effects on CO2 reduction over bimetallic Ni-Au catalysts. Chemical Engineering Science, 2019, 194, 94-104.                                                                                                                            | 1.9  | 42        |
| 23 | Flame spray pyrolysis-designed silica/ceria-zirconia supports for the carbon dioxide reforming of methane. Applied Catalysis A: General, 2017, 546, 47-57.                                                                                      | 2.2  | 41        |
| 24 | Light-Induced Synergistic Multidefect Sites on TiO <sub>2</sub> /SiO <sub>2</sub> Composites for<br>Catalytic Dehydrogenation. ACS Catalysis, 2019, 9, 2674-2684.                                                                               | 5.5  | 41        |
| 25 | 3D Heterostructured Copper Electrode for Conversion of Carbon Dioxide to Alcohols at Low<br>Overpotentials. Advanced Sustainable Systems, 2019, 3, 1800064.                                                                                     | 2.7  | 37        |
| 26 | From passivation to activation – tunable nickel/nickel oxide for hydrogen evolution electrocatalysis.<br>Chemical Communications, 2020, 56, 1709-1712.                                                                                          | 2.2  | 35        |
| 27 | Light-Enhanced CO <sub>2</sub> Reduction to CH <sub>4</sub> using Nonprecious Transition-Metal<br>Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 5056-5066.                                                                     | 3.2  | 29        |
| 28 | Asymmetrical Double Flame Spray Pyrolysis-Designed SiO2/Ce0.7Zr0.3O2 for the Dry Reforming of Methane. ACS Applied Materials & Interfaces, 2019, 11, 25766-25777.                                                                               | 4.0  | 26        |
| 29 | Effect of Metalâ€Support Interactions in Mixed Co/Al Catalysts for Dry Reforming of Methane.<br>ChemCatChem, 2019, 11, 3432-3440.                                                                                                               | 1.8  | 26        |
| 30 | Unifying double flame spray pyrolysis with lanthanum doping to restrict cobalt–aluminate formation<br>in Co/Al <sub>2</sub> O <sub>3</sub> catalysts for the dry reforming of methane. Catalysis Science and<br>Technology, 2019, 9, 4970-4980. | 2.1  | 23        |
| 31 | Silver-Based Plasmonic Catalysts for Carbon Dioxide Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 1879-1887.                                                                                                                   | 3.2  | 23        |
| 32 | Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low<br>temperature steam reforming of methane. Applied Catalysis A: General, 2017, 530, 111-124.                                              | 2.2  | 22        |
| 33 | Photoenhanced CO2 methanation over La2O3 promoted Co/TiO2 catalysts. Applied Catalysis B:<br>Environmental, 2021, 294, 120248.                                                                                                                  | 10.8 | 21        |
| 34 | Altering the influence of ceria oxygen vacancies in<br>Ni/Ce <sub>x</sub> Si <sub>y</sub> O <sub>2</sub> for photothermal CO <sub>2</sub> methanation.<br>Catalysis Science and Technology, 2021, 11, 5297-5309.                                | 2.1  | 17        |
| 35 | Cooperative defect-enriched SiO2 for oxygen activation and organic dehydrogenation. Journal of Catalysis, 2019, 376, 168-179.                                                                                                                   | 3.1  | 16        |
| 36 | Plasma Treating Mixed Metal Oxides to Improve Oxidative Performance via Defect Generation.<br>Materials, 2019, 12, 2756.                                                                                                                        | 1.3  | 15        |

Emma Lovell

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Longâ€lived Charges Applied in<br>Selective Photocatalytic CO <sub>2</sub> Reduction to CH <sub>4</sub> . Angewandte Chemie, 2021, 133,<br>8536-8540. | 1.6 | 11        |
| 38 | Plasma-Induced Catalyst Support Defects for the Photothermal Methanation of Carbon Dioxide.<br>Materials, 2021, 14, 4195.                                                                                           | 1.3 | 11        |
| 39 | Two Steps Back, One Leap Forward: Synergistic Energy Conversion in Plasmonic and Plasma Catalysis.<br>ACS Energy Letters, 2022, 7, 300-309.                                                                         | 8.8 | 7         |
| 40 | Complexities of Capturing Light for Enhancing Thermal Catalysis. Catalysis Letters, 2022, 152, 619-628.                                                                                                             | 1.4 | 2         |