Wenjun Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6715025/publications.pdf

Version: 2024-02-01

28	1,107	16	27
papers	citations	h-index	g-index
30	30	30	1310 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	<i>Botrytis cinerea</i> <scp>BcSSP2</scp> protein is a late infection phase, cytotoxic effector. Environmental Microbiology, 2022, 24, 3420-3435.	3.8	7
2	Functional Analysis of Sterol O-Acyltransferase Involved in the Biosynthetic Pathway of Pachymic Acid in Wolfiporia cocos. Molecules, 2022, 27, 143.	3.8	6
3	A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nature Communications, 2022, 13, 2213.	12.8	25
4	The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nature Communications, 2021, 12, 2166.	12.8	47
5	Comparative transcriptome analysis of rhizome nodes and internodes in Panax. japonicus var. major reveals candidate genes involved in the biosynthesis of triterpenoid saponins. Genomics, 2020, 112, 1112-1119.	2.9	7
6	Full-length transcriptome sequencing and modular organization analysis of oleanolic acid- and dammarane-type saponins related gene expression patterns in Panax japonicus. Genomics, 2020, 112, 4137-4147.	2.9	8
7	The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. Plant Science, 2019, 283, 1-10.	3.6	9
8	The Phosphatome of Medicinal and Edible Fungus Wolfiporia cocos. Current Microbiology, 2018, 75, 124-131.	2.2	5
9	Characterization of <i>Botrytis</i> â€"plant interactions using PathTrack [©] â€"an automated system for dynamic analysis of disease development. Molecular Plant Pathology, 2017, 18, 503-512.	4.2	13
10	Plant Pathogenic Fungi. Microbiology Spectrum, 2017, 5, .	3.0	187
11	Histone Deacetylase AtSRT1 Links Metabolic Flux and Stress Response in Arabidopsis. Molecular Plant, 2017, 10, 1510-1522.	8.3	61
12	BcXYG1, a Secreted Xyloglucanase from <i>Botrytis cinerea</i> , Triggers Both Cell Death and Plant Immune Responses. Plant Physiology, 2017, 175, 438-456.	4.8	102
13	Ssâ€Rhs1, a secretory Rhs repeatâ€containing protein, is required for the virulence of <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2017, 18, 1052-1061.	4.2	59
14	Plant Pathogenic Fungi., 2017,, 701-726.		22
15	The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum. Frontiers in Microbiology, 2017, 8, 1416.	3.5	32
16	BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea. Frontiers in Microbiology, 2017, 8, 1807.	3.5	66
17	The Kinome of Edible and Medicinal Fungus Wolfiporia cocos. Frontiers in Microbiology, 2016, 7, 1495.	3.5	19
18	De Novo Analysis of Wolfiporia cocos Transcriptome to Reveal the Differentially Expressed Carbohydrate-Active Enzymes (CAZymes) Genes During the Early Stage of Sclerotial Growth. Frontiers in Microbiology, 2016, 7, 83.	3.5	23

#	Article	IF	CITATION
19	Colletotrichum higginsianum Mitogen-Activated Protein Kinase ChMK1: Role in Growth, Cell Wall Integrity, Colony Melanization, and Pathogenicity. Frontiers in Microbiology, 2016, 7, 1212.	3.5	50
20	Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 2016, 6, 24325.	3.3	41
21	De novo assembly and transcriptome analysis of sclerotial development in Wolfiporia cocos. Gene, 2016, 588, 149-155.	2.2	16
22	Translocation from nuclei to cytoplasm is necessary for anti Aâ€PCD activity and turnover of the Type II IAP BcBir1. Molecular Microbiology, 2016, 99, 393-406.	2.5	4
23	Resource investigation of traditional medicinal plant Panax japonicus (T.Nees) C.A. Mey and its varieties in China. Journal of Ethnopharmacology, 2015, 166, 79-85.	4.1	27
24	Genetic diversity of Chinese Wolfiporia cocos cultivars revealed by phenotypic traits and ISSR markers. Mycological Progress, 2015, 14, 1.	1.4	2
25	De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochemical and Biophysical Research Communications, 2015, 466, 450-455.	2.1	24
26	An Efficient PEG/CaCl2-Mediated Transformation Approach for the Medicinal Fungus Wolfiporia cocos. Journal of Microbiology and Biotechnology, 2015, 25, 1528-1531.	2.1	13
27	Characterization and antioxidant activities of degraded polysaccharides from Poria cocos sclerotium. Carbohydrate Polymers, 2014, 105, 121-126.	10.2	72
28	A Secretory Protein of Necrotrophic Fungus Sclerotinia sclerotiorum That Suppresses Host Resistance. PLoS ONE, 2013, 8, e53901.	2.5	157