Neus Lozano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6714764/publications.pdf

Version: 2024-02-01

394421 477307 1,512 29 19 29 h-index citations g-index papers 29 29 29 2971 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets. Advanced Science, 2022, 9, e2104559.	11.2	13
2	Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats. Biomaterials, 2021, 271, 120749.	11.4	15
3	Graphene Oxide Nanosheets Interact and Interfere with SARSâ€CoVâ€2 Surface Proteins and Cell Receptors to Inhibit Infectivity. Small, 2021, 17, e2101483.	10.0	46
4	Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes. Carbon, 2021, 176, 458-469.	10.3	8
5	The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. Journal of Controlled Release, 2021, 338, 330-340.	9.9	19
6	Splenic Capture and <i>In Vivo</i> Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS Nano, 2020, 14, 10168-10186.	14.6	51
7	Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials. Small, 2020, 16, e2004029.	10.0	19
8	Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomaterialia, 2019, 96, 271-280.	8.3	100
9	Graphene Oxide Elicits Membrane Lipid Changes and Neutrophil Extracellular Trap Formation. CheM, 2018, 4, 334-358.	11.7	68
10	Graphene-based papers as substrates for cell growth: Characterisation and impact on mammalian cells. FlatChem, 2018, 12, 17-25.	5. 6	20
11	A blueprint for the synthesis and characterisation of thin graphene oxide with controlled lateral dimensions for biomedicine. 2D Materials, 2018, 5, 035020.	4.4	73
12	Liposomeâ€Indocyanine Green Nanoprobes for Optical Labeling and Tracking of Human Mesenchymal Stem Cells Postâ€Transplantation In Vivo. Advanced Healthcare Materials, 2017, 6, 1700374.	7.6	18
13	Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns. Npj 2D Materials and Applications, 2017, 1 , .	7.9	26
14	Purity of graphene oxide determines its antibacterial activity. 2D Materials, 2016, 3, 025025.	4.4	150
15	Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano, 2016, 10, 4459-4471.	14.6	133
16	Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology. 2D Materials, 2016, 3, 014006.	4.4	103
17	Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. International Journal of Pharmaceutics, 2016, 514, 133-141.	5. 2	37
18	Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production. PLoS ONE, 2016, 11, e0166816.	2.5	84

#	Article	IF	CITATION
19	The current graphene safety landscape – a literature mining exercise. Nanoscale, 2015, 7, 6432-6435.	5. 6	47
20	Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. International Journal of Pharmaceutics, 2015, 482, 2-10.	5. 2	95
21	Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials, 2015, 37, 415-424.	11.4	165
22	siRNA liposome-gold nanorod vectors for multispectral optoacoustic tomography theranostics. Nanoscale, 2014, 6, 13451-13456.	5 . 6	30
23	Liposome–Gold Nanorod Hybrids for High-Resolution Visualization Deep in Tissues. Journal of the American Chemical Society, 2012, 134, 13256-13258.	13.7	77
24	Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids, 2011, 40, 721-729.	2.7	28
25	Arginine diacyl-glycerolipid conjugates as multifunctional biocompatible surfactants. Comptes Rendus Chimie, 2011, 14, 726-735.	0.5	10
26	Dynamic Properties of Cationic Diacyl-Glycerol-Arginine-Based Surfactant/Phospholipid Mixtures at the Air/Water Interface. Langmuir, 2010, 26, 2559-2566.	3 . 5	9
27	Surface tension and adsorption behavior of mixtures of diacyl glycerol arginine-based surfactants with DPPC and DMPC phospholipids. Colloids and Surfaces B: Biointerfaces, 2009, 74, 67-74.	5.0	10
28	Catanionic Vesicles Formed with Arginine-Based Surfactants and 1,2-Dipalmitoyl-sn-glycero-3-phosphate Monosodium Salt. Journal of Physical Chemistry B, 2009, 113, 6321-6327.	2.6	30
29	Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering	4.7	28