List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6714648/publications.pdf Version: 2024-02-01

		22099	20307
218	15,918	59	116
papers	citations	h-index	g-index
222	222	222	15354
all docs	docs citations	times ranked	citing authors

PORERTO DANOVARO

#	Article	IF	CITATIONS
1	The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 2010, 5, e11842.	1.1	1,439
2	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	13.6	1,138
3	Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss. Current Biology, 2008, 18, 1-8.	1.8	641
4	A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges. PLoS ONE, 2010, 5, e12110.	1.1	468
5	Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environmental Health Perspectives, 2008, 116, 441-447.	2.8	426
6	Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 2008, 454, 1084-1087.	13.7	366
7	Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE, 2010, 5, e11832.	1.1	321
8	Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning. Science, 2005, 309, 2179-2179.	6.0	309
9	Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8861-8866.	3.3	304
10	Marine viruses and global climate change. FEMS Microbiology Reviews, 2011, 35, 993-1034.	3.9	297
11	Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLoS ONE, 2010, 5, e15323.	1.1	287
12	Challenging the paradigms of deep-sea ecology. Trends in Ecology and Evolution, 2014, 29, 465-475.	4.2	280
13	The first metazoa living in permanently anoxic conditions. BMC Biology, 2010, 8, 30.	1.7	262
14	Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 2017, 5, .	1.1	252
15	Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments. Applied and Environmental Microbiology, 2005, 71, 46-50.	1.4	227
16	The contribution of deepâ€sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology, 2010, 31, 6-20.	0.4	208
17	Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biology, 2013, 11, e1001682.	2.6	194
18	Cascades in Mediterranean Submarine Grand Canyons. Oceanography, 2009, 22, 26-43.	0.5	167

#	Article	IF	CITATIONS
19	Biodiversity response to climate change in a warm deep sea. Ecology Letters, 2004, 7, 821-828.	3.0	164
20	Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Frontiers in Marine Science, 2016, 3, .	1.2	163
21	The deep-sea under global change. Current Biology, 2017, 27, R461-R465.	1.8	150
22	Effects of fish farm waste on Posidonia oceanica meadows: Synthesis and provision of monitoring and management tools. Marine Pollution Bulletin, 2008, 56, 1618-1629.	2.3	142
23	Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology and Evolution, 2020, 4, 181-192.	3.4	142
24	Viriobenthos in freshwater and marine sediments: a review. Freshwater Biology, 2008, 53, 1186-1213.	1.2	125
25	Higher Abundance of Bacteria than of Viruses in Deep Mediterranean Sediments. Applied and Environmental Microbiology, 2002, 68, 1468-1472.	1.4	124
26	Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: A case study in a Mediterranean coastal lagoon. Estuaries and Coasts, 2003, 26, 641-650.	1.7	123
27	Climate Change and the Potential Spreading of Marine Mucilage and Microbial Pathogens in the Mediterranean Sea. PLoS ONE, 2009, 4, e7006.	1.1	123
28	Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Progress in Oceanography, 2000, 46, 367-400.	1.5	120
29	A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine Pollution Bulletin, 2017, 114, 679-688.	2.3	120
30	Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends in Ecology and Evolution, 2001, 16, 505-510.	4.2	117
31	Viral Production, Decay Rates, and Life Strategies along a Trophic Gradient in the North Adriatic Sea. Applied and Environmental Microbiology, 2005, 71, 6644-6650.	1.4	117
32	Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications. Estuarine, Coastal and Shelf Science, 2015, 161, 46-64.	0.9	117
33	Global Carbon Cycling on a Heterogeneous Seafloor. Trends in Ecology and Evolution, 2018, 33, 96-105.	4.2	117
34	Organic matter in sediments of canyons and open slopes of the Portuguese, Catalan, Southern Adriatic and Cretan Sea margins. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 441-457.	0.6	116
35	Viral Density and Virus-to-Bacterium Ratio in Deep-Sea Sediments of the Eastern Mediterranean. Applied and Environmental Microbiology, 2000, 66, 1857-1861.	1.4	114
36	Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs, 2017, 15, 118.	2.2	114

#	Article	IF	CITATIONS
37	Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. Water Research, 2002, 36, 713-721.	5.3	113
38	Temperature impacts on deepâ€sea biodiversity. Biological Reviews, 2016, 91, 275-287.	4.7	113
39	Virus-mediated archaeal hecatomb in the deep seafloor. Science Advances, 2016, 2, e1600492.	4.7	107
40	Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Progress in Oceanography, 1995, 36, 329-341.	1.5	100
41	Deepâ€sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography, 2008, 31, 231-244.	2.1	100
42	Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME Journal, 2020, 14, 740-756.	4.4	99
43	Enzymatic Activity, Bacterial Distribution, and Organic Matter Composition in Sediments of the Ross Sea (Antarctica). Applied and Environmental Microbiology, 1998, 64, 3838-3845.	1.4	99
44	Quantification, base composition, and fate of extracellular DNA in marine sediments. Limnology and Oceanography, 2002, 47, 899-905.	1.6	97
45	Ecology: Protect the deep sea. Nature, 2014, 505, 475-477.	13.7	95
46	New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems. Environmental Science & Technology, 2019, 53, 6616-6631.	4.6	93
47	Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE) Tj ETQq1 1	0.784314 r; 1.5	gBŢ /Overloci
48	Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2003, 26, 27-38.	0.7	91
49	Pollution threats in the Mediterranean Sea: An overview. Chemistry and Ecology, 2003, 19, 15-32.	0.6	86
50	<i>Vibrio harveyi</i> as a causative agent of the White Syndrome in tropical stony corals. Environmental Microbiology Reports, 2010, 2, 120-127.	1.0	86
51	Biodiversity and ecosystem functioning in coastal lagoons: Does microbial diversity play any role?. Estuarine, Coastal and Shelf Science, 2007, 75, 4-12.	0.9	84
52	Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2014-9.	3.3	77
53	Distribution and composition of particulate organic matter in the Ross Sea (Antarctica). Polar Biology, 1993, 13, 525.	0.5	75
54	Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea. Scientific Reports, 2016, 6, 26352.	1.6	75

#	Article	IF	CITATIONS
55	Canyon conditions impact carbon flows in food webs of three sections of the Nazaré canyon. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2461-2476.	0.6	71
56	A fastâ€noving target: achieving marine conservation goals under shifting climate and policies. Ecological Applications, 2020, 30, e02009.	1.8	71
57	Unveiling the Biodiversity of Deep-Sea Nematodes through Metabarcoding: Are We Ready to Bypass the Classical Taxonomy?. PLoS ONE, 2015, 10, e0144928.	1.1	70
58	Red coral extinction risk enhanced by ocean acidification. Scientific Reports, 2013, 3, 1457.	1.6	69
59	Assessment of benthic trophic status of marine coastal ecosystems: Significance of meiofaunal rare taxa. Estuarine, Coastal and Shelf Science, 2011, 93, 420-430.	0.9	68
60	Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. Journal of Applied Ecology, 2020, 57, 1161-1179.	1.9	63
61	Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Critical Reviews in Microbiology, 2016, 42, 883-904.	2.7	61
62	Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Marine Biology, 2007, 152, 339-350.	0.7	60
63	Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin, 2008, 56, 1332-1342.	2.3	60
64	Hotspot Ecosystem Research on Europe's Deep-Ocean Margins. Oceanography, 2004, 17, 132-143.	0.5	60
65	Bacterial response to seasonal changes in labile organic matter composition on the continental shelf and bathyal sediments of the Cretan Sea. Progress in Oceanography, 2000, 46, 345-366.	1.5	59
66	Organic matter composition, metazoan meiofauna and nematode biodiversity in Mediterranean deep-sea sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 755-762.	0.6	59
67	Fish-farm impact on metazoan meiofauna in the Mediterranean Sea: Analysis of regional vs. habitat effects. Marine Environmental Research, 2010, 69, 38-47.	1.1	58
68	Meiofauna distribution and mesoscale variability in two sites of the Ross Sea (Antarctica) with contrasting food supply. Polar Biology, 1999, 22, 115-123.	0.5	57
69	A multiple-scale analysis of metazoan meiofaunal distribution in the deep Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1117-1134.	0.6	57
70	Bioremediation of petroleum hydrocarbons in anoxic marine sediments: Consequences on the speciation of heavy metals. Marine Pollution Bulletin, 2009, 58, 1808-1814.	2.3	57
71	A comparative analysis of metabarcoding and morphologyâ€based identification of benthic communities across different regional seas. Ecology and Evolution, 2018, 8, 8908-8920.	0.8	57
72	Viral abundance and distribution in mesopelagic and bathypelagic waters of the Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1209-1220.	0.6	55

#	Article	IF	CITATIONS
73	Threats to marine biodiversity in European protected areas. Science of the Total Environment, 2019, 677, 418-426.	3.9	54
74	Species richness, species turnover and functional diversity in nematodes of the deep <scp>M</scp> editerranean <scp>S</scp> ea: searching for drivers at different spatial scales. Global Ecology and Biogeography, 2014, 23, 24-39.	2.7	53
75	Prokaryote diversity and viral production in deep-sea sediments and seamounts. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 738-747.	0.6	52
76	Pockmarks enhance deepâ€sea benthic biodiversity: a case study in the western Mediterranean Sea. Diversity and Distributions, 2012, 18, 832-846.	1.9	52
77	Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Science Advances, 2016, 2, e1500961.	4.7	52
78	Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnology and Oceanography, 2007, 52, 508-516.	1.6	51
79	Biochemical composition of pico-, nano- and micro-particulate organic matter and bacterioplankton biomass in the oligotrophic Cretan Sea (NE Mediterranean). Progress in Oceanography, 2000, 46, 279-310.	1.5	50
80	A unique and threatened deep water coral-bivalve biotope new to the Mediterranean Sea offshore the Naples megalopolis. Scientific Reports, 2019, 9, 3411.	1.6	50
81	Viral decay and viral production rates in continental-shelf and deep-sea sediments of the Mediterranean Sea. FEMS Microbiology Ecology, 2010, 72, 208-218.	1.3	49
82	Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiology Letters, 2017, 364, .	0.7	49
83	Space invaders; biological invasions in marine conservation planning. Diversity and Distributions, 2016, 22, 1220-1231.	1.9	48
84	The deep sea: The new frontier for ecological restoration. Marine Policy, 2019, 108, 103642.	1.5	48
85	Vertical Distribution of Meiobenthos in Bathyal Sediments of the Eastern Mediterranean Sea: Relationship with Labile Organic Matter and Bacterial Biomasses. Marine Ecology, 1995, 16, 103-116.	0.4	46
86	Exploring Benthic Biodiversity Patterns and Hot Spots on European Margin Slopes. Oceanography, 2009, 22, 16-25.	0.5	46
87	A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program. Frontiers in Marine Science, 2020, 7, .	1.2	45
88	Trophic specialisation of metazoan meiofauna at the HÃ¥kon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Marine Biology, 2009, 156, 1289-1296.	0.7	44
89	Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions. PLoS ONE, 2014, 9, e91056.	1.1	44
90	Biodiversity response to experimental induced hypoxic-anoxic conditions in seagrass sediments. Biodiversity and Conservation, 2009, 18, 33-54.	1.2	43

#	Article	IF	CITATIONS
91	The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biology, 2016, 14, 43.	1.7	43
92	A decade to study deep-sea life. Nature Ecology and Evolution, 2021, 5, 265-267.	3.4	43
93	Meiofaunal colonisation on artificial substrates: a tool for biomonitoring the environmental quality on coastal marine systems. Marine Pollution Bulletin, 2004, 48, 919-926.	2.3	42
94	A submarine volcanic eruption leads to a novel microbial habitat. Nature Ecology and Evolution, 2017, 1, 144.	3.4	42
95	Human activities and resultant pressures on key European marine habitats: An analysis of mapped resources. Marine Policy, 2018, 98, 1-10.	1.5	42
96	Shallow hydrothermal vents in the southern Tyrrhenian Sea. Chemistry and Ecology, 2010, 26, 285-298.	0.6	40
97	Functional response to food limitation can reduce the impact of global change in the deepâ€sea benthos. Global Ecology and Biogeography, 2017, 26, 1008-1021.	2.7	40
98	The Pillars of Hercules as a bathymetric barrier to gene flow promoting isolation in a global deepâ€sea shark (<i><scp>C</scp>entroscymnus coelolepis</i>). Molecular Ecology, 2015, 24, 6061-6079.	2.0	39
99	Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Progress in Oceanography, 2018, 168, 57-64.	1.5	39
100	The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions, 2022, 24, 3169-3187.	1.2	39
101	Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 97-106.	0.6	38
102	Integrated characterization and risk management of marine sediments: The case study of the industrialized Bagnoli area (Naples, Italy). Marine Environmental Research, 2020, 160, 104984.	1.1	38
103	<i>Spinoloricus cinziae</i> (Phylum Loricifera), a new species from a hypersaline anoxic deep basin in the Mediterranean Sea. Systematics and Biodiversity, 2014, 12, 489-502.	0.5	36
104	Mud volcanoes in the Mediterranean Sea are hot spots of exclusive meiobenthic species. Progress in Oceanography, 2011, 91, 260-272.	1.5	35
105	Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica) Tj ETQq1 1 Environmental Research, 2016, 119, 88-99.	0.78431 1.1	4 rgBT /Ove 34
106	Trophic status and meiofauna biodiversity in the Northern Adriatic Sea: Insights for the assessment of good environmental status. Marine Environmental Research, 2016, 113, 18-30.	1.1	34
107	The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms. Sensors, 2020, 20, 1751.	2.1	34
108	A new molecular approach based on qPCR for the quantification of fecal bacteria in contaminated marine sediments. Journal of Biotechnology, 2012, 157, 446-453.	1.9	33

#	Article	IF	CITATIONS
109	Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 87-100.	0.6	33
110	Response of Benthic Protozoa and Thraustochytrid Protists to Fish Farm Impact in Seagrass (Posidonia oceanica) and Soft-Bottom Sediments. Microbial Ecology, 2005, 50, 268-276.	1.4	32
111	Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME Journal, 2012, 6, 1250-1259.	4.4	32
112	Synthesis of Knowledge on Marine Biodiversity in European Seas: From Census to Sustainable Management. PLoS ONE, 2013, 8, e58909.	1.1	32
113	Lessons from photo analyses of Autonomous Reef Monitoring Structures as tools to detect (bio-)geographical, spatial, and environmental effects. Marine Pollution Bulletin, 2019, 141, 420-429.	2.3	32
114	Benthic microbial loop and meiofaunal response to oil-induced disturbance in coastal sediments: a review. International Journal of Environment and Pollution, 2000, 13, 380.	0.2	31
115	Early diagenesis and trophic role of extracellular DNA in different benthic ecosystems. Limnology and Oceanography, 2007, 52, 1710-1717.	1.6	31
116	Habitat mapping in the European Seas - is it fit for purpose in the marine restoration agenda?. Marine Policy, 2019, 106, 103521.	1.5	31
117	Seasonal changes and biochemical composition of the labile organic matter flux in the Cretan Sea. Progress in Oceanography, 2000, 46, 259-278.	1.5	30
118	Imbalance between phytoplankton production and bacterial carbon demand in relation to mucilage formation in the Northern Adriatic Sea. Science of the Total Environment, 2005, 353, 162-177.	3.9	30
119	Determination of viral production in aquatic sediments using the dilution-based approach. Nature Protocols, 2009, 4, 1013-1022.	5.5	30
120	Biodiversity and life strategies of deep-sea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 108, 13-22.	0.6	29
121	Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach. Frontiers in Marine Science, 2020, 7, .	1.2	29
122	Adding the Third Dimension to Marine Conservation. Conservation Letters, 2018, 11, e12408.	2.8	27
123	Habitat Features and Their Influence on the Restoration Potential of Marine Habitats in Europe. Frontiers in Marine Science, 2020, 7, .	1.2	27
124	Valuing unfamiliar Mediterranean deep-sea ecosystems using visual Q-methodology. Marine Policy, 2015, 61, 227-236.	1.5	26
125	Nematode biodiversity and benthic trophic state are simple tools for the assessment of the environmental quality in coastal marine ecosystems. Ecological Indicators, 2018, 95, 270-287.	2.6	26
126	Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Advances in Oceanography and Limnology, 2010, 1, 167.	0.2	26

#	Article	IF	CITATIONS
127	Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: The case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). Marine Environmental Research, 2020, 154, 104865.	1.1	25
128	Response of BITS (a benthic index based on taxonomic sufficiency) to water and sedimentary variables and comparison with other indices in three Adriatic lagoons. Marine Ecology, 2009, 30, 255-268.	0.4	24
129	Assessing marine environmental status through microphytobenthos assemblages colonizing the Autonomous Reef Monitoring Structures (ARMS) and their potential in coastal marine restoration. Marine Pollution Bulletin, 2017, 125, 56-65.	2.3	24
130	High potential for temperate viruses to drive carbon cycling in chemoautotrophyâ€dominated shallowâ€water hydrothermal vents. Environmental Microbiology, 2017, 19, 4432-4446.	1.8	24
131	Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. Diversity, 2019, 11, 113.	0.7	24
132	Sediment Resuspension Effects on the Benthic Microbial Loop in Experimental Microcosms. Microbial Ecology, 2005, 50, 602-613.	1.4	23
133	Benthic microbial abundance and activities in an intensively trawled ecosystem (Thermaikos Gulf,) Tj ETQq1	1 0.784314 0.9	rgBT ₂ 3 Verlock
134	Patterns and drivers of bacterial α―and βâ€diversity across vertical profiles from surface to subsurface sediments. Environmental Microbiology Reports, 2013, 5, 731-739.	1.0	23
135	Marine ecosystem restoration in a changing ocean. Restoration Ecology, 2021, 29, e13432.	1.4	23
136	Benthic bacterial response to variable estuarine water inputs. FEMS Microbiology Ecology, 2004, 50, 185-194.	1.3	22
137	High prokaryotic biodiversity associated with gut contents of the holothurian Molpadia musculus from the Nazaré Canyon (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 63, 82-90.	0.6	22
138	Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus–prokaryote interactions and functions. Frontiers in Microbiology, 2015, 6, 935.	1.5	22
139	The date mussel Lithophaga lithophaga: Biology, ecology and the multiple impacts of its illegal fishery. Science of the Total Environment, 2020, 744, 140866.	3.9	22
140	Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida) in the Deep Sea. Animals, 2011, 1, 291-305.	1.0	20
141	Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. Rendiconti Lincei, 2018, 29, 525-541.	1.0	20
142	Archaeal Diversity in Deep-Sea Sediments Estimated by Means of Different Terminal-Restriction Fragment Length Polymorphisms (T-RFLP) Protocols. Current Microbiology, 2009, 59, 356-361.	1.0	19
143	High Meiofaunal and Nematodes Diversity around Mesophotic Coral Oases in the Mediterranean Sea. PLoS ONE, 2013, 8, e66553.	1.1	19
144	Enhanced viral activity and dark CO ₂ fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica. Environmental Microbiology, 2016, 18, 4511-4522.	1.8	19

ROBERTO DANOVARO

#	Article	IF	CITATIONS
145	Panâ€regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding Autonomous Reef Monitoring Structures. Molecular Ecology, 2020, 29, 4882-4897.	2.0	19
146	Detritus Rolling Down a Vertical Cliff of the Ligurian Sea (Italy): The Écological Role in Hard Bottom Communities. Marine Ecology, 1991, 12, 281-292.	0.4	18
147	Viral Infections Boost Prokaryotic Biomass Production and Organic C Cycling in Hadal Trench Sediments. Frontiers in Microbiology, 2019, 10, 1952.	1.5	18
148	Acoustic indexes for marine biodiversity trends and ecosystem health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190447.	1.8	18
149	Deep-sea litter in the Gulf of Cadiz (Northeastern Atlantic, Spain). Marine Pollution Bulletin, 2020, 153, 110969.	2.3	18
150	Do Bacteria Compete with Phytoplankton for Inorganic Nutrients? Possible Ecological Implications. Chemistry and Ecology, 1998, 14, 83-96.	0.6	17
151	Pelagic-Benthic Coupling and Diagenesis of Nucleic Acids in a Deep-Sea Continental Margin and an Open-Slope System of the Eastern Mediterranean. Applied and Environmental Microbiology, 2005, 71, 6070-6076.	1.4	17
152	Bioavailable compounds in sinking particulate organic matter, Blanes Canyon, NW Mediterranean Sea: Effects of a large storm and sea surface biological processes. Progress in Oceanography, 2013, 118, 108-121.	1.5	17
153	Particle sources and downward fluxes in the eastern Fram strait under the influence of the west Spitsbergen current. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 103, 49-63.	0.6	17
154	Restoration of <i>Cymodocea nodosa</i> seagrass meadows: efficiency and ecological implications. Restoration Ecology, 2021, 29, e13313.	1.4	17
155	The Future of Integrated Deep-Sea Research in Europe: The HERMIONE Project. Oceanography, 2009, 22, 178-191.	0.5	16
156	Deep-sea mobile megafauna of Mediterranean submarine canyons and open slopes: Analysis of spatial and bathymetric gradients. Progress in Oceanography, 2018, 168, 23-34.	1.5	16
157	Impact of historical sulfide mine tailings discharge on meiofaunal assemblages (PortmÃin Bay,) Tj ETQq1 1 0.784	-314 rgBT 3.9	/Oyerlock 10
158	Sea urchin chronicles. The effect of oxygen super-saturation and marine polluted sediments from Bagnoli-Coroglio Bay on different life stages of the sea urchin Paracentrotus lividus. Marine Environmental Research, 2020, 159, 104967.	1.1	16
159	Research Trends and Future Perspectives in Marine Biomimicking Robotics. Sensors, 2021, 21, 3778.	2.1	16
160	Ecosystem effects of dense water formation on deep Mediterranean Sea ecosystems: an overview. Advances in Oceanography and Limnology, 2010, 1, 67.	0.2	16
161	Benthic Response to Mucilaginous Aggregates in the Northern Adriatic Sea: Biochemical Indicators of Eutrophication. Chemistry and Ecology, 2000, 17, 171-179.	0.6	15
162	Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison. Frontiers in Microbiology, 2016, 7, 1501.	1.5	15

ROBERTO DANOVARO

#	Article	IF	CITATIONS
163	CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments. Marine Environmental Research, 2016, 122, 158-168.	1.1	15
164	Identifying Priorities for the Protection of Deep Mediterranean Sea Ecosystems Through an Integrated Approach. Frontiers in Marine Science, 2021, 8, .	1.2	15
165	Marine archaea and archaeal viruses under global change. F1000Research, 2017, 6, 1241.	0.8	14
166	Drivers of Bacterial α- and β-Diversity Patterns and Functioning in Subsurface Hadal Sediments. Frontiers in Microbiology, 2019, 10, 2609.	1.5	14
167	High diversity of benthic bacterial and archaeal assemblages in deep-Mediterranean canyons and adjacent slopes. Progress in Oceanography, 2019, 171, 154-161.	1.5	14
168	Exergy, ecosystem functioning and efficiency in a coastal lagoon: The role of auxiliary energy. Estuarine, Coastal and Shelf Science, 2009, 84, 227-236.	0.9	13
169	Possible links between holothurian lipid compositions and differences in organic matter (OM) supply at the western Pacific abyssal plains. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 152, 103085.	0.6	13
170	Ecological assessment of anthropogenic impact in marine ecosystems: The case of Bagnoli Bay. Marine Environmental Research, 2020, 158, 104953.	1.1	13
171	Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Science of the Total Environment, 2022, 823, 153701.	3.9	13
172	Microbial Response to Oil Disturbance in the Coastal Sediments of the Ligurian Sea (Nw) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf 0.6	f 50 382 Td (12
173	Meiofaunal assemblages associated with scallop beds (<i>Adamussium colbecki</i>) in the coastal sediments of Terra Nova Bay (Ross Sea, Antarctica). Antarctic Science, 1999, 11, 415-418.	0.5	12
174	Particulate organic matter uptake rates of two benthic filter-feeders (Sabella spallanzanii and) Tj ETQq0 0 0 rgBT Pollution Bulletin, 2007, 54, 622-625.	/Overlock 2.3	10 Tf 50 307 12
175	Towards a common approach to the assessment of the environmental status of deep-sea ecosystems in areas beyond national jurisdiction. Marine Policy, 2020, 121, 104182.	1.5	11
176	Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring. Sensors, 2020, 20, 2911.	2.1	11
177	Diversity and spatial distribution of metal-reducing bacterial assemblages in groundwaters of different redox conditions. International Microbiology, 2009, 12, 153-9.	1.1	11
178	Organic inputs and ecosystem efficiency in the deep Mediterranean sea. Chemistry and Ecology, 2003, 19, 391-398.	0.6	10
179	Limited impact of beach nourishment on macrofaunal recruitment/settlement in a site of community interest in coastal area of the Adriatic Sea (Mediterranean Sea). Marine Pollution Bulletin, 2018, 128, 259-266.	2.3	10
180	Meiofaunal biodiversity in submarine canyons of the Mediterranean Sea: A meta-analysis. Progress in Oceanography, 2019, 170, 69-80.	1.5	10

#	Article	IF	CITATIONS
181	Ocean Acidification Induces Changes in Virus–Host Relationships in Mediterranean Benthic Ecosystems. Microorganisms, 2021, 9, 769.	1.6	10
182	Abyssal fauna, benthic microbes, and organic matter quality across a range of trophic conditions in the western Pacific ocean. Progress in Oceanography, 2021, 195, 102591.	1.5	10
183	Ecosystem service benefits and costs of deep-sea ecosystem restoration. Journal of Environmental Management, 2022, 303, 114127.	3.8	10
184	Integrating Diel Vertical Migrations of Bioluminescent Deep Scattering Layers Into Monitoring Programs. Frontiers in Marine Science, 2021, 8, .	1.2	9
185	Clobal ocean conservation under the magnifying glass . Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 259-260.	0.9	8
186	Impact of breakwater relocation on benthic biodiversity associated with seagrass meadows of northern Adriatic Sea. Rendiconti Lincei, 2018, 29, 571-581.	1.0	8
187	Resting stage in the biogenic fraction of surface sediments from the deep Mediterranean Sea. Scientia Marina, 2004, 68, 103-111.	0.3	8
188	Developing technological synergies between deep-sea and space research. Elementa, 2022, 10, .	1.1	8
189	Possible Use of Rna:Dna Ratio for Detecting Oil Induced Disturbance: A Field Report. Chemistry and Ecology, 1995, 11, 1-10.	0.6	7
190	Vitellogenesis in the deep-sea sharkCentroscymnus coelolepis. Chemistry and Ecology, 2006, 22, 335-345.	0.6	7
191	Intertidal benthic communities of two Chilean coastal islands (Santa MarÃa and Mocha, Southeastern) Tj ETQq1 1	0.78431	4 ₋ rgBT /Over
192	Biodiversity and distribution of meiofauna in the Gioia, Petrace and Dohrn Canyons (Tyrrhenian Sea). Progress in Oceanography, 2019, 171, 162-174.	1.5	7
193	Multi-Collocation-Based Estimation of Wave Climate in a Non-Tidal Bay: The Case Study of Bagnoli-Coroglio Bay (Tyrrhenian Sea). Water (Switzerland), 2020, 12, 1936.	1.2	7
194	Oxygen supersaturation mitigates the impact of the regime of contaminated sediment reworking on sea urchin fertilization process. Marine Environmental Research, 2020, 158, 104951.	1.1	7
195	Rolling Ironstones from Earth and Mars: Terrestrial Hydrothermal Ooids as a Potential Analogue of Martian Spherules. Minerals (Basel, Switzerland), 2021, 11, 460.	0.8	7
196	Silent winters and rock-and-roll summers: The long-term effects of changing oceans on marine fish vocalization. Ecological Indicators, 2021, 125, 107456.	2.6	7
197	In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Global Change Biology, 2021, 27, 6139-6155.	4.2	7
198	Benthic-pelagic coupling in frontal system areas of the Northern Adriatic Sea: Analysis of the carbon budgets. Chemistry and Ecology, 2002, 18, 155-160.	0.6	6

#	Article	IF	CITATIONS
199	Effects of antifouling booster biocide Irgarol 1051 on the structure of free living nematodes: a laboratory experiment. Environmental Sciences: Processes and Impacts, 2016, 18, 832-843.	1.7	6
200	High rates of viral lysis stimulate prokaryotic turnover and C recycling in bathypelagic waters of a Ligurian canyon (Mediterranean Sea). Progress in Oceanography, 2019, 171, 70-75.	1.5	6
201	Macrofaunal assemblages in canyon and adjacent slope of the NW and Central Mediterranean systems. Progress in Oceanography, 2019, 171, 38-48.	1.5	5
202	Multiple declines and recoveries of Adriatic seagrass meadows over forty years of investigation. Marine Pollution Bulletin, 2020, 161, 111804.	2.3	5
203	Reply to: Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nature Ecology and Evolution, 2021, 5, 30-31.	3.4	5
204	Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea). Biology, 2022, 11, 321.	1.3	5
205	Megafaunal assemblages in deep-sea ecosystems of the Gulf of Cadiz, northeast Atlantic ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 183, 103738.	0.6	5
206	Impact of hypersaline brines on benthic meio- and macrofaunal assemblages: A comparison from two desalination plants of the Mediterranean Sea. Desalination, 2022, 532, 115756.	4.0	5
207	Impact of the biocide Irgarol on meiofauna and prokaryotes from the sediments of the Bizerte lagoon—an experimental study. Environmental Science and Pollution Research, 2016, 23, 7712-7721.	2.7	3
208	Local Environmental Conditions Promote High Turnover Diversity of Benthic Deep-Sea Fungi in the Ross Sea (Antarctica). Journal of Fungi (Basel, Switzerland), 2022, 8, 65.	1.5	3
209	Impact of resuspended mine tailings on benthic biodiversity and ecosystem processes: The case study of Portmán Bay, Western Mediterranean Sea, Spain. Environmental Pollution, 2022, 301, 119021.	3.7	3
210	Cytotoxic effects induced by hexachlorobenzene in <i>Squilla mantis</i> (L.) (Crustacea,) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.1	Tf 50 302 Td
211	RAPID IDENTIFICATION OF <i>PSEUDOMONAS</i> SPP. FROM AQUATIC SAMPLES USING TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS. Journal of Rapid Methods and Automation in Microbiology, 2008, 16, 351-373.	0.4	2
212	Rapid response of benthic deep-sea microbes (viruses and prokaryotes) to an intense dense shelf water cascading event in a submarine canyon of the NW Mediterranean Sea. Progress in Oceanography, 2018, 168, 35-42.	1.5	2
213	Where is the climate?. Trends in Ecology and Evolution, 2002, 17, 14.	4.2	1
214	Marine protected areas and endangered shark conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2671-2672.	0.9	1
215	Marine Biology. Biodiversity and Functioning of Marine Ecosystems: Scientific Advancements and New Perspectives for Preserving Marine Life. , 2020, , 447-462.		1
216	30 years of <i>Chemistry and Ecology</i> . Chemistry and Ecology, 2012, 28, 503-505.	0.6	0

#	Article	IF	CITATIONS
217	Oceans: going deep into their past to understand their future. Current Biology, 2018, 28, R806-R807.	1.8	О
218	Advances in limnological and oceanographic research in Italy: the history of the Italian Association of Limnology and Oceanography (AIOL). Advances in Oceanography and Limnology, 2010, 1, 1.	0.2	0