Rotimi Emmanuel Aluko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6714308/publications.pdf Version: 2024-02-01

		14614	25716
232	14,385	66	108
papers	citations	h-index	g-index
234	234	234	9261
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Food Proteinâ€Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science, 2012, 77, R11-24.	1.5	690
2	Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides:  Quantitative Structureâ°Activity Relationship Study of Di- and Tripeptides. Journal of Agricultural and Food Chemistry, 2006, 54, 732-738.	2.4	456
3	Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production Processing and Nutrition, 2020, 2, .	1.1	372
4	Amino Acid Composition and Antioxidant Properties of Pea Seed (Pisum sativum L.) Enzymatic Protein Hydrolysate Fractions. Journal of Agricultural and Food Chemistry, 2010, 58, 4712-4718.	2.4	364
5	Antihypertensive Peptides from Food Proteins. Annual Review of Food Science and Technology, 2015, 6, 235-262.	5.1	265
6	Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutrition Reviews, 2008, 66, 445-454.	2.6	259
7	Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 2013, 5, 219-227.	1.6	258
8	Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum) Tj ETQq0 0	0 rgBT /Ov	verlock 10 T

9	Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates. International Journal of Molecular Sciences, 2011, 12, 3148-3161.	1.8	246
10	Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 2019, 43, e12761.	1.2	231
11	Soybean Foods and Their Benefits: Potential Mechanisms of Action. Nutrition Reviews, 2005, 63, 272-283.	2.6	229
12	Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 198-224.	5.9	228
13	Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa) Protein Hydrolysate Fractions. International Journal of Molecular Sciences, 2011, 12, 6685-6702.	1.8	223
14	Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 2014, 6, 384-394.	1.6	207
15	In Vitro Antioxidant Properties of Hemp Seed (<i>Cannabis sativa</i> L.) Protein Hydrolysate Fractions. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 381-389.	0.8	192
16	Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. Journal of Functional Foods, 2009, 1, 199-207.	1.6	188
17	Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods, 2021, 10, 839.	1.9	187
18	Identification and Inhibitory Properties of Multifunctional Peptides from Pea Protein Hydrolysate. Journal of Agricultural and Food Chemistry, 2010, 58, 11471-11476.	2.4	173

#	Article	IF	CITATIONS
19	Structural and Functional Properties of Hemp Seed Protein Products. Journal of Food Science, 2014, 79, C1512-21.	1.5	173
20	The anti-carcinogenic and anti-atherogenic effects of lycopene: a review. Trends in Food Science and Technology, 2005, 16, 344-350.	7.8	172
21	Health benefits of polyphenols: A concise review. Journal of Food Biochemistry, 2022, 46, .	1.2	170
22	Emulsifying and Foaming Properties of Commercial Yellow Pea (<i>Pisum sativum</i> L.) Seed Flours. Journal of Agricultural and Food Chemistry, 2009, 57, 9793-9800.	2.4	155
23	Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry, 2014, 146, 500-506.	4.2	155
24	Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. Journal of Chromatography A, 2002, 950, 125-130.	1.8	145
25	A comparative study of the structural and functional properties of isolated hemp seed (Cannabis) Tj ETQq1 1 0.7	784314 rgB 5.6	T /Overlock 142
26	Kinetics of Enzyme Inhibition and Antihypertensive Effects of Hemp Seed (<i>Cannabis sativa</i> L.) Protein Hydrolysates. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1767-1774.	0.8	136
27	Multifunctional peptides from egg white lysozyme. Food Research International, 2010, 43, 848-855.	2.9	132
28	Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chemistry, 2009, 116, 277-284.	4.2	131
29	Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Research International, 2012, 49, 432-438.	2.9	125
30	Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry, 2013, 141, 153-159.	4.2	121
31	Polypeptide profile and functional properties of defatted meals and protein isolates of canola seeds. Journal of the Science of Food and Agriculture, 2001, 81, 391-396.	1.7	119
32	Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chemistry, 2015, 173, 652-659.	4.2	117
33	In vitro antioxidant properties of chicken skin enzymatic protein hydrolysates and membrane fractions. Food Chemistry, 2014, 150, 366-373.	4.2	115
34	Effects of High Pressure and Heat Treatments on Physicochemical and Gelation Properties of Rapeseed Protein Isolate. Food and Bioprocess Technology, 2014, 7, 1344-1353.	2.6	113
35	Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends in Food Science and Technology, 2016, 49, 74-84.	7.8	112
36	Blood Pressure Lowering Effect of a Pea Protein Hydrolysate in Hypertensive Rats and Humans. Journal of Agricultural and Food Chemistry, 2011, 59, 9854-9860.	2.4	111

#	Article	IF	CITATIONS
37	Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Research International, 2017, 100, 112-120.	2.9	102
38	Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Food Chemistry, 2014, 145, 66-76.	4.2	101
39	Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. Journal of Agricultural and Food Chemistry, 2020, 68, 11595-11611.	2.4	100
40	Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. Journal of Functional Foods, 2020, 64, 103680.	1.6	99
41	Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science and Emerging Technologies, 2018, 45, 179-185.	2.7	97
42	Antioxidant and Angiotensin Converting Enzyme-Inhibitory Properties of a Flaxseed Protein-Derived High Fischer Ratio Peptide Mixture. Journal of Agricultural and Food Chemistry, 2010, 58, 4762-4768.	2.4	94
43	Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. Journal of Functional Foods, 2016, 24, 196-206.	1.6	94
44	Maillard reaction products derived from food protein-derived peptides: insights into flavor and bioactivity. Critical Reviews in Food Science and Nutrition, 2020, 60, 3429-3442.	5.4	93
45	Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. European Journal of Nutrition, 2014, 53, 1237-1246.	1.8	92
46	Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods, 2013, 5, 781-789.	1.6	91
47	Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Critical Reviews in Food Science and Nutrition, 2019, 59, 2011-2027.	5.4	90
48	Antioxidant properties of Salmon (Salmo salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Research International, 2013, 52, 315-322.	2.9	89
49	Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science, 2015, 4, 44-50.	4.1	89
50	Inhibition of the <i>inÂvitro</i> activities of αâ€amylase, αâ€glucosidase and pancreatic lipase by yellow field pea (<i>Pisum sativum</i> L) protein hydrolysates. International Journal of Food Science and Technology, 2019, 54, 2021-2034.	1.3	89
51	Structural and Antihypertensive Properties of Enzymatic Hemp Seed Protein Hydrolysates. Nutrients, 2015, 7, 7616-7632.	1.7	88
52	Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein. Food Chemistry, 2012, 132, 468-475.	4.2	85
53	Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food and Function, 2016, 7, 2431-2437.	2.1	85
54	Kinetics and Molecular Docking Studies of the Inhibitions of Angiotensin Converting Enzyme and Renin Activities by Hemp Seed (<i>Cannabis sativa</i> L.) Peptides. Journal of Agricultural and Food Chemistry, 2014, 62, 4135-4144.	2.4	82

ROTIMI EMMANUEL ALUKO

#	Article	IF	CITATIONS
55	A Novel Hemp Seed Meal Protein Hydrolysate Reduces Oxidative Stress Factors in Spontaneously Hypertensive Rats. Nutrients, 2014, 6, 5652-5666.	1.7	81
56	Tryptophan Released From Mother's Milk Has Antioxidant Properties. Pediatric Research, 2009, 66, 614-618.	1.1	80
57	Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International, 2014, 55, 281-287.	2.9	80
58	Potential of a Renin Inhibitory Peptide from the Red Seaweed <i>Palmaria palmata</i> as a Functional Food Ingredient Following Confirmation and Characterization of a Hypotensive Effect in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2014, 62, 8352-8356.	2.4	80
59	Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Research International, 2022, 151, 110823.	2.9	78
60	Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocolloids, 2020, 108, 106042.	5.6	77
61	Insights into formation, detection and removal of the beany flavor in soybean protein. Trends in Food Science and Technology, 2021, 112, 336-347.	7.8	76
62	Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration. Innovative Food Science and Emerging Technologies, 2015, 31, 151-159.	2.7	75
63	Reverse-phase HPLC Separation of Hemp Seed (Cannabis sativa L.) Protein Hydrolysate Produced Peptide Fractions with Enhanced Antioxidant Capacity. Plant Foods for Human Nutrition, 2013, 68, 39-46.	1.4	73
64	Modification of the structural, emulsifying, and foaming properties of an isolated pea protein by thermal pretreatment. CYTA - Journal of Food, 2018, 16, 357-366.	0.9	71
65	Angiotensin l–converting enzyme–inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Food Research International, 2016, 89, 373-381.	2.9	70
66	Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting enzyme and renin. International Journal of Biological Macromolecules, 2017, 101, 207-213.	3.6	70
67	Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chemistry, 2008, 111, 942-950.	4.2	69
68	Physicochemical and emulsification properties of flaxseed (Linum usitatissimum) albumin and globulin fractions. Food Chemistry, 2018, 255, 216-225.	4.2	69
69	Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 2018, 4, e00877.	1.4	68
70	Bitter taste receptor T2R1 is activated by dipeptides and tripeptides. Biochemical and Biophysical Research Communications, 2010, 398, 331-335.	1.0	67
71	Polypeptide composition and functional properties of African yam bean seed (Sphenostylis stenocarpa) albumin, globulin and protein concentrate. Food Hydrocolloids, 2016, 56, 189-200.	5.6	67
72	Functional Foods and Nutraceuticals. Food Science Text Series, 2012, , .	0.3	66

#	Article	IF	CITATIONS
73	Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate. Journal of Functional Foods, 2018, 49, 333-341.	1.6	66
74	Effects of exopeptidase treatment on antihypertensive activity and taste attributes of enzymatic whey protein hydrolysates. Journal of Functional Foods, 2015, 13, 262-275.	1.6	65
75	Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. Journal of Functional Foods, 2020, 64, 103635.	1.6	65
76	Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. LWT - Food Science and Technology, 2018, 97, 269-278.	2.5	64
77	Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity. Journal of Functional Foods, 2017, 34, 77-88.	1.6	60
78	In vitro digestibility, structural and functional properties of Moringa oleifera seed proteins. Food Hydrocolloids, 2020, 101, 105574.	5.6	59
79	Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Research International, 2013, 54, 1528-1534.	2.9	58
80	In Vitro Acetylcholinesteraseâ€Inhibitory Properties of Enzymatic Hemp Seed Protein Hydrolysates. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 411-420.	0.8	58
81	Evaluating Molecular Mechanism of Hypotensive Peptides Interactions with Renin and Angiotensin Converting Enzyme. PLoS ONE, 2014, 9, e91051.	1.1	56
82	Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment. Food Chemistry, 2015, 188, 510-516.	4.2	55
83	Identification of bioactive peptides from a papain hydrolysate of bovine serum albumin and assessment of an antihypertensive effect in spontaneously hypertensive rats. Food Research International, 2016, 81, 91-99.	2.9	55
84	A brief review on emerging trends in global polyphenol research. Journal of Food Biochemistry, 2018, 42, e12519.	1.2	54
85	Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 2016, 197, 1008-1014.	4.2	53
86	Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innovative Food Science and Emerging Technologies, 2016, 37, 253-260.	2.7	52
87	Food protein-derived renin-inhibitory peptides: <i>in vitro</i> and <i>in vivo</i> properties. Journal of Food Biochemistry, 2019, 43, e12648.	1.2	51
88	Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation, 2021, 7, 63.	1.4	50
89	Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Critical Reviews in Food Science and Nutrition, 2022, 62, 4593-4606.	5.4	49
90	Multifunctional Cationic Peptide Fractions from Flaxseed Protein Hydrolysates. Plant Foods for Human Nutrition, 2012, 67, 1-9.	1.4	48

#	Article	IF	CITATIONS
91	Rice bran attenuated obesity <i>via</i> alleviating dyslipidemia, browning of white adipocytes and modulating gut microbiota in high-fat diet-induced obese mice. Food and Function, 2020, 11, 2406-2417.	2.1	48
92	Glycinyl-Histidinyl-Serine (GHS), a Novel Rapeseed Protein-Derived Peptide Has Blood Pressure-Lowering Effect in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 8396-8402.	2.4	47
93	Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International, 2015, 77, 10-16.	2.9	46
94	Identification of bioactive peptides from brewers' spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods, 2019, 60, 103455.	1.6	46
95	Relationship of hydrophobicity and solubility with some functional properties of cowpea (Vigna) Tj ETQq1 1 0.784	4314 rgBT 1.7	/Qyerlock 1
96	Characterization of oil-in-water emulsions stabilized by hen's egg yolk granule. Food Hydrocolloids, 1998, 12, 203-210.	5.6	45
97	Effect of cationic flaxseed protein hydrolysate fractions on the in vitro structure and activity of calmodulin-dependent endothelial nitric oxide synthase. Molecular Nutrition and Food Research, 2006, 50, 958-966.	1.5	44
98	Quantitative structure–activity relationship modeling of renin-inhibiting dipeptides. Amino Acids, 2012, 42, 1379-1386.	1.2	44
99	Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. Journal of Functional Foods, 2015, 14, 133-143.	1.6	43
100	Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends in Food Science and Technology, 2017, 69, 74-82.	7.8	43
101	Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocolloids, 2020, 100, 105424.	5.6	43
102	Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. Journal of Food Biochemistry, 2020, 44, e13090.	1.2	42
103	Mechanism of the inhibition of calmodulin-dependent neuronal nitric oxide synthase by flaxseed protein hydrolysates. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 335-340.	0.8	40
104	Effects of NaCl and pH on the structural conformations of kidney bean vicilin. Food Chemistry, 2013, 139, 624-630.	4.2	40
105	Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science and Nutrition, 2018, 6, 1879-1889.	1.5	40
106	Antioxidant properties of chlorophyll-enriched and chlorophyll-depleted polyphenolic fractions from leaves of Vernonia amygdalina and Gongronema latifolium. Food Research International, 2011, 44, 2435-2441.	2.9	39
107	Effects of cationic property on the in vitro antioxidant activities of pea protein hydrolysate fractions. Food Research International, 2011, 44, 1069-1074.	2.9	39
108	Thermoase-Derived Flaxseed Protein Hydrolysates and Membrane Ultrafiltration Peptide Fractions Have Systolic Blood Pressure-Lowering Effects in Spontaneously Hypertensive Rats. International Journal of Molecular Sciences, 2014, 15, 18131-18147.	1.8	39

#	Article	IF	CITATIONS
109	Structure, composition and functional properties of storage proteins extracted from bambara groundnut (<i>Vigna subterranea</i>) landraces. International Journal of Food Science and Technology, 2017, 52, 1211-1220.	1.3	39
110	Beef Protein-Derived Peptides as Bitter Taste Receptor T2R4 Blockers. Journal of Agricultural and Food Chemistry, 2018, 66, 4902-4912.	2.4	39
111	Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International, 2010, 43, 582-588.	2.9	38
112	Inhibitions of renin and angiotensin converting enzyme activities by enzymatic chicken skin protein hydrolysates. Food Research International, 2013, 53, 260-267.	2.9	38
113	Structural and functional properties of Buchholzia coriacea seed flour and protein concentrate at different pH and protein concentrations. Food Hydrocolloids, 2018, 74, 275-288.	5.6	38
114	Angiotensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. International Journal of Food Sciences and Nutrition, 2008, 59, 428-437.	1.3	37
115	Amino acid profile, protein digestibility, thermal and functional properties of Conophor nut (<i>Tetracarpidium conophorum</i>) defatted flour, protein concentrate and isolates. International Journal of Food Science and Technology, 2012, 47, 731-739.	1.3	37
116	A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chemistry, 2019, 270, 25-31.	4.2	37
117	Addition of an Enzymatic Hydrolysate of Bovine Globulins to Bread and Determination of Hypotensive Effects in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2016, 64, 1741-1750.	2.4	36
118	Inhibitory properties of bambara groundnut protein hydrolysate and peptide fractions against angiotensinâ€converting enzymes, renin and free radicals. Journal of the Science of Food and Agriculture, 2017, 97, 2834-2841.	1.7	34
119	Debittering of salmon (Salmo salar) frame protein hydrolysate using 2-butanol in combination with β-cyclodextrin: Impact on some physicochemical characteristics and antioxidant activities. Food Chemistry, 2020, 321, 126686.	4.2	34
120	Hydrolyzed collagen from porcine lipaseâ€defatted seabass skin: Antioxidant, fibroblast cell proliferation, and collagen production activities. Journal of Food Biochemistry, 2019, 43, e12825.	1.2	33
121	In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. Journal of Food Biochemistry, 2021, 45, e13587.	1.2	33
122	Angiotensin I Converting Enzyme-Inhibitory Peptides from Commercial Wet- and Dry-Milled Corn Germ. Journal of Agricultural and Food Chemistry, 2008, 56, 2620-2623.	2.4	32
123	Competitive Adsorption of Hen's Egg Yolk Granule Lipoproteins and Phosvitin in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 1997, 45, 4564-4570.	2.4	31
124	Comparative study of the polypeptide profiles and functional properties ofSinapis alba andBrassica juncea seed meals and protein concentrates. Journal of the Science of Food and Agriculture, 2005, 85, 1931-1937.	1.7	31
125	Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (<i>Gadus morhua</i>) protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats. Food and Nutrition Research, 2015, 59, 29788.	1.2	31
126	Antihypertensive properties of tilapia (<i>Oreochromis spp</i> .) frame and skin enzymatic protein hydrolysates. Food and Nutrition Research, 2017, 61, 1391666.	1.2	31

#	Article	IF	CITATIONS
127	Antioxidant Properties of Flaxseed Protein Hydrolysates: Influence of Hydrolytic Enzyme Concentration and Peptide Size. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1105-1118.	0.8	31
128	Electrophoretic and functional properties of mustard seed meals and protein concentrates. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 679.	0.8	30
129	Kinetics of the inhibition of calcium/calmodulin-dependent protein kinase II by pea protein-derived peptides. Journal of Nutritional Biochemistry, 2005, 16, 656-662.	1.9	30
130	Development of valueâ€added nutritious crackers with high antidiabetic properties from blends of <i>Acha</i> (<i>Digitaria exilis</i>) and blanched Pigeon pea (<i>Cajanus cajan</i>). Food Science and Nutrition, 2018, 6, 1791-1802.	1.5	30
131	Renin and angiotensin converting enzyme inhibition with antioxidant properties of African yam bean protein hydrolysate and reverse-phase HPLC-separated peptide fractions. Food Research International, 2013, 52, 437-444.	2.9	29
132	Maillard-reacted peptides from glucosamine-induced glycation exhibit a pronounced salt taste-enhancing effect. Food Chemistry, 2022, 374, 131776.	4.2	29
133	Competitive adsorption between egg yolk lipoproteins and whey proteins on oil-in-water interfaces. Colloids and Surfaces B: Biointerfaces, 1998, 10, 385-393.	2.5	28
134	Isolation and structural properties of the major protein fraction in Australian wattle seed (Acacia) Tj ETQq0 0 0 r	gBT /Over 4.2	lock 10 Tf 50
135	Inhibitory Activities of Polyphenolic Extracts of Bangladeshi Vegetables against α-Amylase, α-Glucosidase, Pancreatic Lipase, Renin, and Angiotensin-Converting Enzyme . Foods, 2020, 9, 844.	1.9	28
136	Pacific white shrimp (<i>Litopenaeus vannamei</i>) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. Journal of Food Biochemistry, 2021, 45, e13569.	1.2	27
137	Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends in Food Science and Technology, 2021, 113, 301-314.	7.8	27
138	Comparative study of the emulsifying and foaming properties of defatted coriander (Coriandrum) Tj ETQq0 0 0	rgBT Ove 2.9	rlock 10 Tf 50
139	Bioactive Peptides. Food Science Text Series, 2012, , 37-61.	0.3	26
140	Novel Indole Alkaloids from <i>Nauclea latifolia</i> and Their Reninâ€Inhibitory Activities. Chemistry and Biodiversity, 2013, 10, 401-410.	1.0	26
141	Transport of angiotensin converting enzyme and renin dual inhibitory peptides LY, RALP and TF across Caco-2 cell monolayers. Journal of Functional Foods, 2017, 35, 303-314.	1.6	26
142	Kinetics of acetylcholinesterase inhibition by hemp seed proteinâ€derived peptides. Journal of Food Biochemistry, 2019, 43, e12897.	1.2	26
143	Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chemistry, 2020, 319, 126563.	4.2	25
144	Functional properties of sesame (Sesamum indicum Linn) seed protein fractions. Food Production Processing and Nutrition, 2021, 3, .	1.1	24

#	Article	IF	CITATIONS
145	Functional Characterization of Mung Bean Meal Protein-Derived Antioxidant Peptides. Molecules, 2021, 26, 1515.	1.7	24
146	Kinetics of the Inhibition of Renin and Angiotensin I Converting Enzyme by Polar and Non-polar Polyphenolic Extracts of Vernonia Amygdalina and Gongronema Latifolium Leaves. Plant Foods for Human Nutrition, 2011, 66, 320-327.	1.4	23
147	Enhanced Asian sea bass skin defatting using porcine lipase with the aid of pulsed electric field pretreatment and vacuum impregnation. Process Biochemistry, 2019, 86, 58-64.	1.8	23
148	In vitro antihypertensive and antioxidative properties of trypsinâ€derived <i>Moringa oleifera</i> seed globulin hydrolyzate and its membrane fractions. Food Science and Nutrition, 2019, 7, 132-138.	1.5	23
149	Size of the aliphatic chain of sodium houttuyfonate analogs determines their affinity for renin and angiotensin I converting enzyme. International Journal of Biological Macromolecules, 2007, 41, 274-280.	3.6	22
150	A Concise Review of Current In Vitro Chemical and Cell-Based Antioxidant Assay Methods. Molecules, 2021, 26, 4865.	1.7	22
151	Antihypertensive Properties of a Pea Protein Hydrolysate during Short―and Longâ€Term Oral Administration to Spontaneously Hypertensive Rats. Journal of Food Science, 2016, 81, H1281-7.	1.5	21
152	A metabolomics approach for investigating urinary and plasma changes in spontaneously hypertensive rats (SHR) fed with chicken skin protein hydrolysates diets. Journal of Functional Foods, 2016, 22, 20-33.	1.6	21
153	Antihypertensive and bovine plasma oxidation-inhibitory activities of spent hen meat protein hydrolysates. Journal of Food Biochemistry, 2017, 41, e12378.	1.2	21
154	Structural and functional characterization of rice starch-based superabsorbent polymer materials. International Journal of Biological Macromolecules, 2020, 153, 1291-1298.	3.6	21
155	Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties, 2020, 23, 955-970.	1.3	21
156	Transport, Bioavailability, Safety, and Calmodulin-Dependent-Phosphodiesterase-Inhibitory Properties of Flaxseed-Derived Bioactive Peptides. Journal of Agricultural and Food Chemistry, 2019, 67, 1429-1436.	2.4	20
157	Structural modulation of calmodulin and calmodulin-dependent protein kinase II by pea protein hydrolysates. International Journal of Food Sciences and Nutrition, 2006, 57, 178-189.	1.3	19
158	Metabolomics as a tool to study the mechanism of action of bioactive protein hydrolysates and peptides: A review of current literature. Trends in Food Science and Technology, 2019, 91, 625-633.	7.8	19
159	Effect of Pulsed Electric Fieldâ€Assisted Process in Combination with Porcine Lipase on Defatting of Seabass Skin. Journal of Food Science, 2019, 84, 1799-1805.	1.5	19
160	Enzymatic Pea Protein Hydrolysates Are Active Trypsin and Chymotrypsin Inhibitors. Foods, 2019, 8, 200.	1.9	19
161	Effect of Protease Type and Peptide Size on the In Vitro Antioxidant, Antihypertensive and Anti-Diabetic Activities of Eggplant Leaf Protein Hydrolysates. Foods, 2021, 10, 1112.	1.9	19
162	Effect of hydrolyzed collagen from defatted Asian sea bass (Lates calcarifer) skin on fibroblast proliferation, migration and antioxidant activities. Journal of Food Science and Technology, 2021, 58, 541-551.	1.4	18

#	Article	IF	CITATIONS
163	Inhibition of the in vitro Activities of α-Amylase and Pancreatic Lipase by Aqueous Extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis Leaves. Frontiers in Nutrition, 2021, 8, 772903.	1.6	18
164	Physicochemical and functional properties of albumin, globulin and glutelin fractions of green lentil seed. International Journal of Food Science and Technology, 2022, 57, 3967-3981.	1.3	18
165	Kinetics of in vitro enzyme inhibition and blood pressure-lowering effects of salmon (Salmo salar) protein hydrolysates in spontaneously hypertensive rats. Journal of Functional Foods, 2016, 20, 43-53.	1.6	17
166	Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods, 2020, 9, 1406.	1.9	17
167	A double-blind, randomized, crossover trial protocol of whole hemp seed protein and hemp seed protein hydrolysate consumption for hypertension. Trials, 2020, 21, 354.	0.7	17
168	Thermoaseâ€hydrolysed pigeon pea protein and its membrane fractions possess in vitro bioactive properties (antioxidative, antihypertensive, and antidiabetic). Journal of Food Biochemistry, 2021, 45, e13429.	1.2	17
169	Antioxidant and enzymes inhibitory properties of Amaranth leaf protein hydrolyzates and ultrafiltration peptide fractions. Journal of Food Biochemistry, 2021, 45, e13396.	1.2	17
170	Comparative Study of the Structural and Functional Properties of Membrane-Isolated and Isoelectric pH Precipitated Green Lentil Seed Protein Isolates. Membranes, 2021, 11, 694.	1.4	16
171	Antioxidant and antihypertensive activities of wonderful cola (Buchholzia coriacea) seed protein and enzymatic protein hydrolysates. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 3, 133-143.	2.4	16
172	Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. Chemosphere, 2022, 307, 135650.	4.2	16
173	Effect of high pressure treatment on rapeseed protein microparticle properties and gastrointestinal release behavior of the encapsulated peptides. Food Research International, 2015, 77, 549-555.	2.9	15
174	Influence of enzymatic hydrolysis, pH and storage temperature on the emulsifying properties of canola protein isolate and hydrolysates. International Journal of Food Science and Technology, 2018, 53, 2316-2324.	1.3	15
175	Influence of nitrogen fertilizer micro-dosing on phenolic content, antioxidant, and anticholinesterase properties of aqueous extracts of three tropical leafy vegetables. Journal of Food Biochemistry, 2018, 42, e12566.	1.2	15
176	Foodâ€derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer's Disease. EFood, 2021, 2, 49-58.	1.7	15
177	Antioxidant and enzyme-inhibitory properties of sesame seed protein fractions and their isolate and hydrolyzate. International Journal of Food Properties, 2021, 24, 780-795.	1.3	15
178	Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods, 2021, 10, 2696.	1.9	15
179	Generation of phenolic-rich extracts from brewers' spent grain and characterisation of their in vitro and in vivo activities. Innovative Food Science and Emerging Technologies, 2021, 68, 102617.	2.7	14
180	Effect of a microbial calcium-independent transglutaminase on functional properties of a partially purified cowpea (vigna unguiculata) globulin. Journal of the Science of Food and Agriculture, 1999, 79, 286-290.	1.7	13

#	Article	IF	CITATIONS
181	Antioxidant and Renin-Angiotensin System Inhibitory Properties of Cashew Nut and Fluted-Pumpkin Protein Hydrolysates. Polish Journal of Food and Nutrition Sciences, 0, , 275-289.	0.6	13
182	Liposomes loaded with betel leaf (<i>Piper betle</i> L.) ethanolic extract prepared by thin film hydration and ethanol injection methods: Characteristics and antioxidant activities. Journal of Food Biochemistry, 2021, 45, e14012.	1.2	13
183	Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules, 2022, 27, 1059.	1.7	13
184	Etiology and management of Alzheimer's disease: Potential role of gut microbiota modulation with probiotics supplementation. Journal of Food Biochemistry, 2022, 46, e14043.	1.2	13
185	Polyphenol composition and antioxidant properties of vegetable leafâ€fortified bread. Journal of Food Biochemistry, 2019, 43, e12625.	1.2	12
186	Glycated Beef Protein Hydrolysates as Sources of Bitter Taste Modifiers. Nutrients, 2019, 11, 2166.	1.7	12
187	Stability of tuna trypsinâ€loaded alginateâ€chitosan beads in acidic stomach fluid and the release of active enzyme in a simulated intestinal tract environment. Journal of Food Biochemistry, 2020, 44, e13455.	1.2	12
188	Amino acid composition and antioxidant properties of the enzymatic hydrolysate of calabash nutmeg () Tj ETQq0 Biochemistry, 2021, 45, e13437.	0 0 0 rgBT 1.2	/Overlock 10 12
189	Impact of Hydrolyzed Collagen from Defatted Sea Bass Skin on Proliferation and Differentiation of Preosteoblast MC3T3-E1 Cells. Foods, 2021, 10, 1476.	1.9	12
190	Structural and Functional Properties of a Partially Purified Cowpea (Vigna unguiculata) Globulin Modified with Protein Kinase and Glycopeptidase. Journal of Agricultural and Food Chemistry, 1997, 45, 2907-2913.	2.4	11
191	Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells. Food Chemistry, 2015, 185, 226-232.	4.2	11
192	Antihypertensive properties of aqueous extracts of vegetable leafâ€fortified bread after oral administration to spontaneously hypertensive rats. International Journal of Food Science and Technology, 2018, 53, 1705-1716.	1.3	11
193	In vitro antihypertensive and antioxidative properties of alcalase-derived Moringa oleifera seed globulin hydrolysate and its membrane fractions. Journal of Food Processing and Preservation, 2019, 43, e13862.	0.9	11
194	<i>In vitro</i> antioxidant and wound-healing activities of hydrolyzed collagen from defatted Asian sea bass skin as influenced by different enzyme types and hydrolysis processes. RSC Advances, 2021, 11, 18144-18151.	1.7	11
195	Characterization of a Calcium-Soluble Protein Fraction from Yellow Mustard (Sinapis alba) Seed Meal with Potential Application as an Additive to Calcium-Rich Drinks. Journal of Agricultural and Food Chemistry, 2004, 52, 6030-6034.	2.4	10
196	Restriction of thein VitroFormation of Angiotensin II by Leucinyl-Arginyl-Tryptophan, a Novel Peptide with Potent Angiotensin I-Converting Enzyme Inhibitory Activity. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1277-1280.	0.6	10
197	Technology for the Production and Utilization of Food Protein-Derived Antihypertensive Peptides: A Review. Recent Patents on Biotechnology, 2007, 1, 260-267.	0.4	10
198	Hydrolyzed collagen from defatted sea bass skin and its conjugate with epigallocatechin gallate: In vitro antioxidant, anti-inflammatory, wound-healing and anti-obesity activities. Food Bioscience, 2021, 43. 101303.	2.0	10

#	Article	IF	CITATIONS
199	Advanced Glycation End-Products Can Activate or Block Bitter Taste Receptors. Nutrients, 2019, 11, 1317.	1.7	9
200	Anti-allergic activity of mung bean (<i>Vigna radiata</i> (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non - gastrointestinal and gastrointestinal enzymes. Journal of Food Biochemistry, 2019, 43, e12674.	1.2	9
201	Extraction Optimization and Antioxidant Properties of African Eggplant <i> (Solanum) Tj ETQq1 1 0.784314 rgBT</i>	Overlock 1.4	1g Tf 50 663
202	Technological Properties of Acetylated Pigeon Pea Starch and Its Stabilized Set-Type Yoghurt. Foods, 2020, 9, 957.	1.9	8
203	Composition and some functional properties of Bambara groundnuts vicilin fraction. LWT - Food Science and Technology, 2020, 125, 109256.	2.5	8
204	Physical and chemical characteristics of Asian sea bass bioâ€calcium powders as affected by ultrasonication treatment and drying method. Journal of Food Biochemistry, 2021, 45, e13652.	1.2	8
205	In Vitro Characterization of Fluted Pumpkin Leaf Protein Hydrolysates and Ultrafiltration of Peptide Fractions: Antioxidant and Enzyme-Inhibitory Properties. Polish Journal of Food and Nutrition Sciences, 2020, 70, 429-443.	0.6	8
206	Acetylcholinesterase and butyrylcholinesterase inhibitory activities of antioxidant peptides obtained from enzymatic pea protein hydrolysates and their ultrafiltration peptide fractions. Journal of Food Biochemistry, 2022, 46, .	1.2	8
207	Some Functional Properties of a Cowpea <i>(Vigna unguiculata)</i> Globulin Isolate Treated with Transglutaminase. Bioscience, Biotechnology and Biochemistry, 1995, 59, 2298-2299.	0.6	7
208	Polypeptide Profile, Amino Acid Composition and Some Functional Properties of Calabash Nutmeg (<i>Monodora myristica</i>) Flour and Protein Products. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1361-1371.	0.8	7
209	Effect of Pea Flours with Different Particle Sizes on Antioxidant Activity in Pan Breads. Cereal Chemistry, 2017, 94, 866-872.	1.1	7
210	MORINGA OLEIFERA FLOUR PROTEIN FRACTIONS AS FOOD INGREDIENTS WITH ANTIOXIDANT PROPERTIES. SDRP Journal of Food Science & Technology, 2019, 4, 720-728.	0.2	7
211	Physicochemical and Functional Properties of Membrane-Fractionated Heat-Induced Pea Protein Aggregates. Frontiers in Nutrition, 2022, 9, 852225.	1.6	7
212	Antihypertensive effect of aqueous polyphenol extracts of Amaranthusviridis and Telfairiaoccidentalis leaves in spontaneously hypertensive rats. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 1, .	2.4	6
213	Proximate Composition, Mineral Profile and Trypsin-Inhibitory Activity of West African Leafy Vegetables: Influence of Urea Micro-Dosing and Harvest Time. Polish Journal of Food and Nutrition Sciences, 2020, 70, 179-188.	0.6	6
214	Antioxidative, antiâ€inflammatory, and anticancer properties of the red biopigment extract from <i>Monascus purpureus</i> (<scp>MTCC</scp> 369). Journal of Food Biochemistry, 2022, 46, .	1.2	6
215	Structural and functional characterization of legume seed ferritin concentrates. Journal of Food Biochemistry, 2018, 42, e12498.	1.2	5
216	Physicochemical, Antioxidant and Sensory Properties of Ready-to-drink Chrysanthemum Tea Fortified with Hydrolyzed Collagen from Salmon Scale Ossein. Journal of Aquatic Food Product Technology, 2021, 30, 1159-1172.	0.6	5

#	Article	IF	CITATIONS
217	Solanum macrocarpon Leaf Extracts Reduced Blood Pressure and Heart Rate After Oral Administration to Spontaneously Hypertensive Rats. Current Topics in Nutraceutical Research, 2019, 17, 282-290.	0.1	5
218	Some Functional Properties of an Enzymatically Phosphorylated Cowpea (Vigna unguiculata)Clobulin Isolate. Bioscience, Biotechnology and Biochemistry, 1995, 59, 2207-2209.	0.6	4
219	Effect of Membrane Processing on Amino Acid Composition and Antioxidant Properties of Marble Vine Seed (Dioclea reflexa) Protein Hydrolysate. Journal of Food Processing and Preservation, 2017, 41, e12917.	0.9	4
220	Binding of sodium houttuyfonate analogues to bovine serum albumin revealed by fluoresence quenching study. Medicinal Chemistry Research, 2010, 19, 1287-1295.	1.1	3
221	The role of omega-3 fatty acids in skeletal muscle anabolism, strength, and function in healthy and diseased states. Journal of Food Biochemistry, 2017, 41, e12435.	1.2	3
222	Antihypertensive Foods: Protein Hydrolysates and Peptides. , 2019, , 237-247.		3
223	In situ oxidation of canola meal sinapic acid by horseradish peroxidase (type II) and tyrosinase. Journal of Food Biochemistry, 2019, 43, e12884.	1.2	3
224	How does a celiac iceberg really float? The relationship between celiac disease and gluten. Critical Reviews in Food Science and Nutrition, 2023, 63, 9233-9261.	5.4	2
225	Chemical composition and in vitro antioxidant properties of waterâ€soluble extracts obtained from Bangladesh vegetables. Journal of Food Biochemistry, 2021, 45, e13357.	1.2	1
226	Fertilizer micro-dosing and harvesting time of indigenous leafy vegetables affect in vitro antioxidant activities. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 6, .	2.4	1
227	Amino acid composition, mineral profile, free radical scavenging ability, and carbohydrase inhibitory properties of <i>Moringa oleifera</i> seed globulin, hydrolysates, and membrane fractions. Journal of Food Biochemistry, 2022, , e14131.	1.2	1
228	Editorial: Building on Existing Strength. Journal of Food Biochemistry, 2016, 40, 263-263.	1.2	0
229	Modulation of the secondary and tertiary structures of African yam bean (Sphenostylis) Tj ETQq1 1 0.784314 rgBT Biochemistry, 2017, 41, e12321.	- /Overlocl 1.2	k 10 Tf 50 2 0
230	Application of Metabolomics in Bioactive Peptides Studies. , 2021, , 425-446.		0
231	Indigestible cowpea proteins reduced plasma cholesterol after long-term oral administration to Sprague-Dawley rats. Food Production Processing and Nutrition, 2021, 3, .	1.1	0

232 Cardiovascular benefits of food protein-derived bioactive peptides. , 2021, , 581-606.