Agnieszka Natalia Ksiazkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6713881/publications.pdf

Version: 2024-02-01

933447 1125743 14 282 10 13 g-index citations h-index papers 16 16 16 304 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Closing the 1–5 µm size gap: Temperature-programmed, fed-batch synthesis of µm-sized microgels. Chemical Engineering Journal, 2020, 379, 122293.	12.7	11
2	Undiscovered Potential: Ge Catalysts for Lactide Polymerization. Chemistry - A European Journal, 2020, 26, 212-221.	3.3	34
3	Mononuclear zinc(II) Schiff base complexes as catalysts for the ring-opening polymerization of lactide. European Polymer Journal, 2020, 122, 109302.	5.4	33
4	Electrochemical contrast switching between black and white appearance of gelatin-covered zinc. JPhys Materials, 2020, 3, 025009.	4.2	0
5	Towards New Robust Zn(II) Complexes for the Ringâ€Opening Polymerization of Lactide Under Industrially Relevant Conditions. ChemistryOpen, 2019, 8, 1020-1026.	1.9	17
6	Heterolepic <i>β</i> à€Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide. ChemistryOpen, 2019, 8, 951-960.	1.9	20
7	Tuning a robust system: N,O zinc guanidine catalysts for the ROP of lactide. Dalton Transactions, 2019, 48, 6071-6082.	3.3	31
8	Model-based prediction of the hydrodynamic radius of collapsed microgels and experimental validation. Chemical Engineering Journal, 2019, 378, 121740.	12.7	8
9	New Kids in Lactide Polymerization: Highly Active and Robust Iron Guanidine Complexes as Superior Catalysts. ChemSusChem, 2019, 12, 2161-2165.	6.8	53
10	Identifiability Analysis and Parameter Estimation of Microgel Synthesis: A Set-Membership Approach. Industrial & Set-Membership Chemistry Research, 2019, 58, 13675-13685.	3.7	10
11	Monitoring Microgel Synthesis by Copolymerization of Nâ€isopropylacrylamide and Nâ€vinylcaprolactam via Inâ€Line Raman Spectroscopy and Indirect Hard Modeling. Macromolecular Reaction Engineering, 2018, 12, 1700067.	1.5	12
12	Enzymatic synthesis of temperature-responsive poly($\langle i \rangle N \langle i \rangle$ -vinylcaprolactam) microgels with glucose oxidase. Green Chemistry, 2018, 20, 431-439.	9.0	23
13	Synthesis, Structures, and Catalytic Activity of Homo―and Heteroleptic Ketoiminate Zinc Complexes in Lactide Polymerization. European Journal of Inorganic Chemistry, 2018, 2018, 4014-4021.	2.0	17
14	Kinetic Modeling of Precipitation Terpolymerization for Functional Microgels. Computer Aided Chemical Engineering, 2018, 43, 109-114.	0.5	13