Jiuyong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6713304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying miRNAs, targets and functions. Briefings in Bioinformatics, 2014, 15, 1-19.	3.2	444
2	(α, k)-anonymity. , 2006, , .		395
3	Assessment of network module identification across complex diseases. Nature Methods, 2019, 16, 843-852.	9.0	213
4	CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics, 2017, 33, 3131-3133.	1.8	196
5	Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 2018, 161, 134-146.	4.0	115
6	Kernel Discriminant Learning for Ordinal Regression. IEEE Transactions on Knowledge and Data Engineering, 2010, 22, 906-910.	4.0	114
7	Computational methods for identifying miRNA sponge interactions. Briefings in Bioinformatics, 2017, 18, bbw042.	3.2	111
8	An improvement of symbolic aggregate approximation distance measure for time series. Neurocomputing, 2014, 138, 189-198.	3.5	108
9	Discover Dependencies from Data—A Review. IEEE Transactions on Knowledge and Data Engineering, 2012, 24, 251-264.	4.0	103
10	DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discovery Today, 2016, 21, 718-724.	3.2	99
11	Identifying functional miRNA–mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 2010, 26, 3105-3111.	1.8	91
12	Inferring microRNA–mRNA causal regulatory relationships from expression data. Bioinformatics, 2013, 29, 765-771.	1.8	75
13	LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics, 2018, 34, 4232-4240.	1.8	73
14	Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics, 2009, 10, 408.	1.2	72
15	Multi-Source Causal Feature Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 2240-2256.	9.7	66
16	Feature Fusion Using Locally Linear Embedding for Classification. IEEE Transactions on Neural Networks, 2010, 21, 163-168.	4.8	64
17	Privacy preserving serial data publishing by role composition. Proceedings of the VLDB Endowment, 2008, 1, 845-856.	2.1	62
18	Using causal discovery for feature selection in multivariate numerical time series. Machine Learning, 2015, 101, 377-395.	3.4	62

#	Article	IF	CITATIONS
19	Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data. PLoS ONE, 2016, 11, e0152792.	1.1	59
20	miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics, 2018, 19, 514.	1.2	59
21	A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1483-1495.	1.9	58
22	Discovery of functional miRNA–mRNA regulatory modules with computational methods. Journal of Biomedical Informatics, 2009, 42, 685-691.	2.5	54
23	Mining risk patterns in medical data. , 2005, , .		53
24	Efficient Outlier Detection for High-Dimensional Data. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 2451-2461.	5.9	52
25	On optimal rule discovery. IEEE Transactions on Knowledge and Data Engineering, 2006, 18, 460-471.	4.0	50
26	Satisfying Privacy Requirements Before Data Anonymization. Computer Journal, 2012, 55, 422-437.	1.5	48
27	Mining the optimal class association rule set. Knowledge-Based Systems, 2002, 15, 399-405.	4.0	47
28	Efficient discovery of risk patterns in medical data. Artificial Intelligence in Medicine, 2009, 45, 77-89.	3.8	42
29	Causal Decision Trees. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 257-271.	4.0	40
30	miRspongeR: an R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics, 2019, 20, 235.	1.2	40
31	A Unified View of Causal and Non-causal Feature Selection. ACM Transactions on Knowledge Discovery From Data, 2021, 15, 1-46.	2.5	39
32	Publishing anonymous survey rating data. Data Mining and Knowledge Discovery, 2011, 23, 379-406.	2.4	37
33	(α, k)-anonymous data publishing. Journal of Intelligent Information Systems, 2009, 33, 209-234.	2.8	36
34	Injecting purpose and trust into data anonymisation. Computers and Security, 2011, 30, 332-345.	4.0	36
35	From miRNA regulation to miRNA-TF co-regulation: computational approaches and challenges. Briefings in Bioinformatics, 2015, 16, 475-496.	3.2	36
36	An integrated model for next page access prediction. International Journal of Knowledge and Web Intelligence, 2009, 1, 48.	0.2	35

#	Article	IF	CITATIONS
37	Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics, 2013, 14, 92.	1.2	35
38	Ensemble Methods for MiRNA Target Prediction from Expression Data. PLoS ONE, 2015, 10, e0131627.	1.1	35
39	Accurate data-driven prediction does not mean high reproducibility. Nature Machine Intelligence, 2020, 2, 13-15.	8.3	35
40	Information based data anonymization for classification utility. Data and Knowledge Engineering, 2011, 70, 1030-1045.	2.1	34
41	A sub-national economic complexity analysis of Australia's states and territories. Regional Studies, 2018, 52, 715-726.	2.5	34
42	A Semantics Aware Random Forest for Text Classification. , 2019, , .		34
43	Anonymization by Local Recoding in Data with Attribute Hierarchical Taxonomies. IEEE Transactions on Knowledge and Data Engineering, 2008, 20, 1181-1194.	4.0	33
44	Inferring and analyzing module-specific IncRNA–mRNA causal regulatory networks in human cancer. Briefings in Bioinformatics, 2019, 20, 1403-1419.	3.2	33
45	miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships. PLoS ONE, 2015, 10, e0145386.	1.1	33
46	Mining Causal Association Rules. , 2013, , .		32
47	Combined Feature Selection and Cancer Prognosis Using Support Vector Machine Regression. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1671-1677.	1.9	30
48	Combined Gene Selection Methods for Microarray Data Analysis. Lecture Notes in Computer Science, 2006, , 976-983.	1.0	30
49	Supervised signal detection for adverse drug reactions in medication dispensing data. Computer Methods and Programs in Biomedicine, 2018, 161, 25-38.	2.6	29
50	Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 2019, 7, 227-245.	2.4	29
51	Identifying direct miRNA–mRNA causal regulatory relationships in heterogeneous data. Journal of Biomedical Informatics, 2014, 52, 438-447.	2.5	27
52	Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics, 2016, 17, 7.	1.2	25
53	Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics, 2017, 33, 2372-2378.	1.8	25
54	Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics, 2017, 18, 44.	1.2	25

#	Article	IF	CITATIONS
55	A general framework for privacy preserving data publishing. Knowledge-Based Systems, 2013, 54, 276-287.	4.0	24
56	Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives. Nature Communications, 2020, 11, 3074.	5.8	24
57	Discovery of Causal Rules Using Partial Association. , 2012, , .		23
58	Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction. BMC Bioinformatics, 2019, 20, 143.	1.2	23
59	Inferring condition-specific miRNA activity from matched miRNA and mRNA expression data. Bioinformatics, 2014, 30, 3070-3077.	1.8	22
60	Development of smart data analytics tools to support wastewater treatment plant operation. Chemometrics and Intelligent Laboratory Systems, 2018, 177, 140-150.	1.8	22
61	CBNA: A control theory based method for identifying coding and non-coding cancer drivers. PLoS Computational Biology, 2019, 15, e1007538.	1.5	22
62	Robust rule-based prediction. IEEE Transactions on Knowledge and Data Engineering, 2006, 18, 1043-1054.	4.0	21
63	Practical Approaches to Causal Relationship Exploration. Springer Briefs in Electrical and Computer Engineering, 2015, , .	0.3	21
64	Inferring miRNA sponge co-regulation of protein-protein interactions in human breast cancer. BMC Bioinformatics, 2017, 18, 243.	1.2	20
65	A probabilistic approach to mitigate composition attacks on privacy in non-coordinated environments. Knowledge-Based Systems, 2014, 67, 361-372.	4.0	19
66	From Observational Studies to Causal Rule Mining. ACM Transactions on Intelligent Systems and Technology, 2016, 7, 1-27.	2.9	19
67	A Graph is Worth a Thousand Words: Telling Event Stories using Timeline Summarization Graphs. , 2019, , .		19
68	Computational methods for cancer driver discovery: A survey. Theranostics, 2021, 11, 5553-5568.	4.6	19
69	Effective Pruning for the Discovery of Conditional Functional Dependencies. Computer Journal, 2013, 56, 378-392.	1.5	18
70	Discovering statistically non-redundant subgroups. Knowledge-Based Systems, 2014, 67, 315-327.	4.0	18
71	A hybrid approach to prevent composition attacks for independent data releases. Information Sciences, 2016, 367-368, 324-336.	4.0	18
72	LMSM: AÂmodular approach for identifying lncRNA related miRNA sponge modules in breast cancer. PLoS Computational Biology, 2020, 16, e1007851.	1.5	17

#	Article	IF	CITATIONS
73	<i>Certus</i> . Proceedings of the VLDB Endowment, 2019, 12, 653-666.	2.1	17
74	How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics?. British Journal of Educational Technology, 2022, 53, 822-843.	3.9	17
75	R-U policy frontiers for health data de-identification. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1029-1041.	2.2	16
76	A novel single-cell based method for breast cancer prognosis. PLoS Computational Biology, 2020, 16, e1008133.	1.5	16
77	Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles. PLoS ONE, 2016, 11, e0152860.	1.1	15
78	Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Frontiers in Cellular and Infection Microbiology, 2018, 8, 164.	1.8	15
79	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15
80	Data mining techniques for data cleaning. , 2010, , 796-804.		14
81	Mining combined causes in large data sets. Knowledge-Based Systems, 2016, 92, 104-111.	4.0	14
82	Mining Markov Blankets Without Causal Sufficiency. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 6333-6347.	7.2	14
83	Identifying miRNA synergism using multiple-intervention causal inference. BMC Bioinformatics, 2019, 20, 613.	1.2	14
84	Satisfying Privacy Requirements: One Step before Anonymization. Lecture Notes in Computer Science, 2010, , 181-188.	1.0	14
85	An approximate microaggregation approach for microdata protection. Expert Systems With Applications, 2012, 39, 2211-2219.	4.4	13
86	Nonparametric Sparse Matrix Decomposition for Cross-View Dimensionality Reduction. IEEE Transactions on Multimedia, 2017, 19, 1848-1859.	5.2	13
87	Learning Markov Blankets From Multiple Interventional Data Sets. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 2005-2019.	7.2	13
88	Time to infer miRNA sponge modules. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1686.	3.2	13
89	Mining Optimal Class Association Rule Set. Lecture Notes in Computer Science, 2001, , 364-375.	1.0	13
90	Mining Informative Rule Set for Prediction. Journal of Intelligent Information Systems, 2004, 22, 155-174.	2.8	12

Jiuyong Li

#	Article	IF	CITATIONS
91	Injecting purpose and trust into data anonymisation. , 2009, , .		12
92	Secure Outsourced Frequent Pattern Mining by Fully Homomorphic Encryption. Lecture Notes in Computer Science, 2015, , 70-81.	1.0	12
93	Detecting signals of detrimental prescribing cascades from social media. Artificial Intelligence in Medicine, 2016, 71, 43-56.	3.8	12
94	Authenticity and credibility aware detection of adverse drug events from social media. International Journal of Medical Informatics, 2018, 120, 101-115.	1.6	12
95	Association Rule Discovery with Unbalanced Class Distributions. Lecture Notes in Computer Science, 2003, , 221-232.	1.0	12
96	Top-k Similarity Matching in Large Graphs with Attributes. Lecture Notes in Computer Science, 2014, , 156-170.	1.0	11
97	Opportunistic mining of top-n high utility patterns. Information Sciences, 2018, 441, 171-186.	4.0	11
98	Manipulating Visibility of Political and Apolitical Threads on Reddit via Score Boosting. , 2018, , .		11
99	Detecting potential signals of adverse drug events from prescription data. Artificial Intelligence in Medicine, 2020, 104, 101839.	3.8	11
100	Multilabel Feature Selection: A Local Causal Structure Learning Approach. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3044-3057.	7.2	11
101	Distributed Anonymization for Multiple Data Providers in a Cloud System. Lecture Notes in Computer Science, 2013, , 346-360.	1.0	11
102	Achieving P-Sensitive K-Anonymity via Anatomy. , 2009, , .		10
103	A Framework for Reputation Bootstrapping Based on Reputation Utility and Game Theories. , 2011, , .		10
104	Authenticity and credibility aware detection of adverse drug events from social media. International Journal of Medical Informatics, 2018, 120, 157-171.	1.6	10
105	Privacy preserving serial publication of transactional data. Information Systems, 2019, 82, 53-70.	2.4	10
106	Leveraging burst in twitter network communities for event detection. World Wide Web, 2020, 23, 2851-2876.	2.7	10
107	Mining Differential Dependencies: A Subspace Clustering Approach. Lecture Notes in Computer Science, 2014, , 50-61.	1.0	10

108 Cloning for privacy protection in multiple independent data publications. , 2011, , .

9

Jiuyong Li

#	Article	IF	CITATIONS
109	Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular BioSystems, 2016, 12, 454-463.	2.9	9
110	A data-driven method to detect adverse drug events from prescription data. Journal of Biomedical Informatics, 2018, 85, 10-20.	2.5	9
111	On the Complexity of Restricted k-anonymity Problem. , 2008, , 287-296.		9
112	A Unified Survey of Treatment Effect Heterogeneity Modelling and Uplift Modelling. ACM Computing Surveys, 2022, 54, 1-36.	16.1	9
113	Using multiple and negative target rules to make classifiers more understandable. Knowledge-Based Systems, 2006, 19, 438-444.	4.0	8
114	Inferring functional miRNA–mRNA regulatory modules in epithelial–mesenchymal transition with a probabilistic topic model. Computers in Biology and Medicine, 2012, 42, 428-437.	3.9	8
115	On discovery of functional dependencies from data. Data and Knowledge Engineering, 2013, 86, 146-159.	2.1	8
116	Efficient Discovery of Differential Dependencies Through Association Rules Mining. Lecture Notes in Computer Science, 2015, , 3-15.	1.0	8
117	A novel framework for inferring condition-specific TF and miRNA co-regulation of protein–protein interactions. Gene, 2016, 577, 55-64.	1.0	8
118	Discrimination detection by causal effect estimation. , 2017, , .		8
119	Multi-label relational classification via node and label correlation. Neurocomputing, 2018, 292, 72-81.	3.5	8
120	Collective behavior learning by differentiating personal preference from peer influence. Knowledge-Based Systems, 2018, 159, 233-243.	4.0	8
121	<i>pDriver</i> : a novel method for unravelling personalized coding and miRNA cancer drivers. Bioinformatics, 2021, 37, 3285-3292.	1.8	8
122	Representing Association Classification Rules Mined from Health Data. Lecture Notes in Computer Science, 2005, , 1225-1231.	1.0	8
123	A Fast Algorithm for Finding Correlation Clusters in Noise Data. , 2007, , 639-647.		8
124	Learning Causal Representations for Robust Domain Adaptation. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	4.0	8
125	STMM: Semantic and Temporal-Aware Markov Chain Model for Mobility Prediction. Lecture Notes in Computer Science, 2015, , 103-111.	1.0	7
126	Carbon: Forecasting Civil Unrest Events by Monitoring News and Social Media. Lecture Notes in Computer Science, 2017, , 859-865.	1.0	7

#	Article	IF	CITATIONS
127	Exploring cell-specific miRNA regulation with single-cell miRNA-mRNA co-sequencing data. BMC Bioinformatics, 2021, 22, 578.	1.2	7
128	Efficient discovery of de-identification policy options through a risk-utility frontier. , 2013, 2013, 59-70.		6
129	Constructing and Combining Orthogonal Projection Vectors for Ordinal Regression. Neural Processing Letters, 2015, 41, 139-155.	2.0	6
130	A relative privacy model for effective privacy preservation in transactional data. Concurrency Computation Practice and Experience, 2019, 31, e4923.	1.4	6
131	Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data. Journal of Biomedical Informatics, 2020, 112, 103603.	2.5	6
132	Uncovering the roles of microRNAs/IncRNAs in characterising breast cancer subtypes and prognosis. BMC Bioinformatics, 2021, 22, 300.	1.2	6
133	Utility Aware Clustering for Publishing Transactional Data. Lecture Notes in Computer Science, 2017, , 481-494.	1.0	6
134	Sufficient dimension reduction for average causal effect estimation. Data Mining and Knowledge Discovery, 2022, 36, 1174-1196.	2.4	6
135	(p ⁺ , α)-sensitive k-anonymity: A new enhanced privacy protection model. , 2008, , .		5
136	Unifying Spatial, Temporal and Semantic Features for an Effective GPS Trajectory-Based Location Recommendation. Lecture Notes in Computer Science, 2015, , 41-53.	1.0	5
137	SensorTree: Bursty Propagation Trees as Sensors for Protest Event Detection. Lecture Notes in Computer Science, 2018, , 281-296.	1.0	5
138	Information Propagation Trees forÂProtest Event Prediction. Lecture Notes in Computer Science, 2018, , 777-789.	1.0	5
139	A general framework for causal classification. International Journal of Data Science and Analytics, 2021, 11, 127-139.	2.4	5
140	miRSM: an R package to infer and analyse miRNA sponge modules in heterogeneous data. RNA Biology, 2021, 18, 2308-2320.	1.5	5
141	Conditional Differential Dependencies (CDDs). Lecture Notes in Computer Science, 2015, , 3-17.	1.0	5
142	Methods to Mitigate Risk of Composition Attack in Independent Data Publications. , 2015, , 179-200.		5
143	<i>DriverGroup</i> : a novel method for identifying driver gene groups. Bioinformatics, 2020, 36, i583-i591.	1.8	5
144	LoPAD: A Local Prediction Approach to Anomaly Detection. Lecture Notes in Computer Science, 2020, , 660-673.	1.0	5

#	Article	IF	CITATIONS
145	Toward Unique and Unbiased Causal Effect Estimation From Data With Hidden Variables. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6108-6120.	7.2	5
146	Causal Feature Selection With Dual Correction. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 938-951.	7.2	5
147	A Robust Ensemble Classification Method Analysis. Advances in Experimental Medicine and Biology, 2010, 680, 149-155.	0.8	4
148	Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data. Health Information Science and Systems, 2017, 5, 5.	3.4	4
149	ParallelPC: An R Package for Efficient Causal Exploration in Genomic Data. Lecture Notes in Computer Science, 2018, , 207-218.	1.0	4
150	L-Diversity Based Dynamic Update for Large Time-Evolving Microdata. Lecture Notes in Computer Science, 2008, , 461-469.	1.0	4
151	A Role-Based Framework for Multi-agent Teaming. Lecture Notes in Computer Science, 2008, , 642-649.	1.0	4
152	Data Privacy against Composition Attack. Lecture Notes in Computer Science, 2012, , 320-334.	1.0	3
153	A Relative Privacy Model for Effective Privacy Preservation in Transactional Data. , 2017, , .		3
154	Estimating heterogeneous treatment effect by balancing heterogeneity and fitness. BMC Bioinformatics, 2018, 19, 518.	1.2	3
155	A pseudotemporal causality approach to identifying miRNA–mRNA interactions during biological processes. Bioinformatics, 2021, 37, 807-814.	1.8	3
156	A Study on the Applications of Emerging Sequential Patterns. Lecture Notes in Computer Science, 2014, , 62-73.	1.0	3
157	A Role-Based Cognitive Architecture for Multi-Agent Teaming. Studies in Computational Intelligence, 2010, , 229-255.	0.7	3
158	Identifying preeclampsia-associated genes using a control theory method. Briefings in Functional Genomics, 2022, 21, 296-309.	1.3	3
159	Prediction of student actions using weighted Markov models. , 2008, , .		2
160	Spectral Representation of Protein Sequences. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1335-1339.	0.4	2
161	Discovering Functional microRNA-mRNA Regulatory Modules in Heterogeneous Data. Advances in Experimental Medicine and Biology, 2013, 774, 267-290.	0.8	2
162	Preface to the ACM TIST Special Issue on Causal Discovery and Inference. ACM Transactions on Intelligent Systems and Technology, 2016, 7, 1-3.	2.9	2

#	Article	IF	CITATIONS
163	Identifying microRNA targets in epithelial-mesenchymal transition using joint-intervention causal inference. , 2017, , .		2
164	Guest Editorial: Special Issue on Causal Discovery 2017. International Journal of Data Science and Analytics, 2018, 6, 1-2.	2.4	2
165	Semantic Explanations in Ensemble Learning. Lecture Notes in Computer Science, 2019, , 29-41.	1.0	2
166	Data-driven discovery of causal interactions. International Journal of Data Science and Analytics, 2019, 8, 285-297.	2.4	2
167	Discovering Collective Group Relationships. Lecture Notes in Computer Science, 2014, , 110-121.	1.0	2
168	Effective Outlier Detection based on Bayesian Network and Proximity. , 2018, , .		2
169	On the Effectiveness of Gene Selection for Microarray Classification Methods. Lecture Notes in Computer Science, 2010, , 300-309.	1.0	2
170	Give Rookies A Chance: A Trust-Based Institutional Online Supplier Recommendation Framework. International Federation for Information Processing, 2012, , 400-411.	0.4	2
171	PSL: An Algorithm for Partial Bayesian Network Structure Learning. ACM Transactions on Knowledge Discovery From Data, 2022, 16, 1-25.	2.5	2
172	Portable devices of security and privacy preservation for e-learning. , 2008, , .		1
173	Authorization approaches for advanced permission-role assignments. , 2008, , .		1
174	Comparing decision tree and optimal risk pattern mining for analysing emergency Ultra Short Stay Unit data. , 2008, , .		1
175	A role-oriented BDI framework for real-time multiagent teaming. Intelligent Decision Technologies, 2008, 2, 205-217.	0.6	1
176	A simple yet effective data integration approach to tree-based microarray data classification. , 2010, 2010, 1503-6.		1
177	Detecting data inconsistencies by multiple target rules. International Journal of Business and Systems Research, 2012, 6, 296.	0.2	1
178	Access Time Oracle for Planar Graphs. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 1959-1970.	4.0	1
179	Beyond Understanding and Prediction. , 2017, , .		1
180	Introduction to the Special Section on Advances in Causal Discovery and Inference. ACM Transactions on Intelligent Systems and Technology, 2019, 10, 1-3.	2.9	1

#	Article	IF	CITATIONS
181	ORPSW: a new classifier for gene expression data based on optimal risk and preventive patterns. Journal of Computers, 2011, 6, .	0.4	1
182	IMPACT: A Novel Clustering Algorithm based on Attraction. Journal of Computers, 2012, 7, .	0.4	1
183	Exploring Groups from Heterogeneous Data via Sparse Learning. Lecture Notes in Computer Science, 2013, , 556-567.	1.0	1
184	A Data Visualisation Tool for Treatment Process Monitoring in Web Browsers. Water Conservation Science and Engineering, 0, , .	0.9	1
185	Constraining and Summarizing Optimal Risk and Preventive Patterns in Medical Data. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
186	Spectral representation of DNA sequences and its application. , 2010, , .		0
187	A Two-Layer Multi-dimensional Trustworthiness Metric for Web Service Composition. Lecture Notes in Computer Science, 2013, , 151-162.	1.0	Ο
188	From Association Analysis to Causal Discovery. , 2013, , .		0
189	Preface to the First IEEE ICDM Workshop on Causal Discovery. , 2013, , .		0
190	Trends and Applications in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, 2015, , .	1.0	0
191	An Effective Spatio-Temporal Approach for Predicting Future Semantic Locations. Lecture Notes in Computer Science, 2016, , 283-294.	1.0	0
192	Guest editorial: special issue on causal discovery. International Journal of Data Science and Analytics, 2017, 3, 79-80.	2.4	0
193	Which Type of Classifier to Use for Networked Data, Connectivity Based or Feature Based?. Lecture Notes in Computer Science, 2018, , 364-380.	1.0	0
194	Discovering context specific causal relationships. Intelligent Data Analysis, 2019, 23, 917-931.	0.4	0
195	Validating Privacy Requirements in Large Survey Rating Data. Studies in Computational Intelligence, 2011, , 445-469.	0.7	0
196	Use Rule Based to Predict Dirty Values. , 2012, , 693-703.		0
197	A Study of the Single Point Mutation Loci in the Hepatitis B Virus Sequences via Optimal Risk and Preventive Sets with Weights. Lecture Notes in Computer Science, 2012, , 460-471.	1.0	0
198	Logics for Representing Data Mining Tasks in Inductive Databases. Lecture Notes in Computer Science, 2014, , 214-222.	1.0	0

#	Article	IF	CITATIONS
199	Causal Rule Discovery with Cohort Studies. Springer Briefs in Electrical and Computer Engineering, 2015, , 51-66.	0.3	0
200	LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. , 2020, 16, e1007851.		0
201	LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. , 2020, 16, e1007851.		0
202	LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. , 2020, 16, e1007851.		0
203	LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. , 2020, 16, e1007851.		0