Fang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712850/publications.pdf

Version: 2024-02-01

		759233	1058476
15	689	12	14
papers	citations	h-index	g-index
16	16	16	1029
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science Translational Medicine, 2022, 14, eabm6586.	12.4	37
2	Effect of pore size and spacing on neovascularization of a biodegradble shape memory polymer perivascular wrap. Journal of Biomedical Materials Research - Part A, 2021, 109, 272-288.	4.0	7
3	Kupffer cell release of platelet activating factor drives dose limiting toxicities of nucleic acid nanocarriers. Biomaterials, 2021, 268, 120528.	11.4	12
4	Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects <i>in Vivo</i> . Bioconjugate Chemistry, 2021, 32, 928-941.	3 . 6	20
5	Shape-Defined microPlates for the Sustained Intra-articular Release of Dexamethasone in the Management of Overload-Induced Osteoarthritis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31379-31392.	8.0	19
6	Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage. Nature Biomedical Engineering, 2021, 5, 1069-1083.	22.5	52
7	Top-Down Fabricated microPlates for Prolonged, Intra-articular Matrix Metalloproteinase 13 siRNA Nanocarrier Delivery to Reduce Post-traumatic Osteoarthritis. ACS Nano, 2021, 15, 14475-14491.	14.6	21
8	Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials, 2020, 263, 120377.	11.4	45
9	Minimal dosing of leukocyte targeting TRAIL decreases triple-negative breast cancer metastasis following tumor resection. Science Advances, 2019, 5, eaaw4197.	10.3	50
10	Dual carrier-cargo hydrophobization and charge ratio optimization improve the systemic circulation and safety of zwitterionic nano-polyplexes. Biomaterials, 2019, 192, 245-259.	11.4	27
11	Zwitterionic Nanocarrier Surface Chemistry Improves siRNA Tumor Delivery and Silencing Activity Relative to Polyethylene Glycol. ACS Nano, 2017, 11, 5680-5696.	14.6	96
12	Local Delivery of PHD2 siRNA from ROSâ€Degradable Scaffolds to Promote Diabetic Wound Healing. Advanced Healthcare Materials, 2016, 5, 2751-2757.	7.6	71
13	489. Localized, siRNA-Mediated Silencing of PHD2 to Promote Wound Vascularization. Molecular Therapy, 2015, 23, S194-S195.	8.2	0
14	A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials, 2014, 35, 3766-3776.	11.4	124
15	Tunable Delivery of siRNA from a Biodegradable Scaffold to Promote Angiogenesis In Vivo. Advanced Materials, 2014, 26, 607-614.	21.0	106