
Roberto Busi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced production of waterâ€soluble cinmethylin metabolites by <i>Lolium rigidum</i> populations with reduced cinmethylin sensitivity. Pest Management Science, 2022, 78, 3173-3182.	1.7	4
2	Are herbicide mixtures unaffected by resistance? A case study with <i>Lolium rigidum</i> . Weed Research, 2021, 61, 92-99.	0.8	16
3	Herbicide resistance management strategies: how do they compare with those for insecticides, fungicides and antibiotics?. Pest Management Science, 2021, 77, 3049-3056.	1.7	25
4	Can new herbicide discovery allow weed management to outpace resistance evolution?. Pest Management Science, 2021, 77, 3036-3041.	1.7	35
5	Pyroxasulfone-Resistant Annual Ryegrass (<i>Lolium rigidum</i>) Has Enhanced Capacity for Glutathione Transferase-Mediated Pyroxasulfone Conjugation. Journal of Agricultural and Food Chemistry, 2021, 69, 6414-6422.	2.4	9
6	Herbicide resistance across the <scp>Australi</scp> <scp>an</scp> continent. Pest Management Science, 2021, 77, 5139-5148.	1.7	12
7	Rapid On-Farm Testing of Resistance in Lolium rigidum to Key Pre- and Post-Emergence Herbicides. Plants, 2021, 10, 1879.	1.6	1
8	Transfer of resistance alleles from herbicide-resistant to susceptible grass weeds via pollen-mediated gene flow. Weed Technology, 2021, 35, 869-885.	0.4	7
9	Rotations and mixtures of soilâ€∎pplied herbicides delay resistance. Pest Management Science, 2020, 76, 487-496.	1.7	65
10	Loss of trifluralin metabolic resistance in Lolium rigidum plants exposed to prosulfocarb recurrent selection. Pest Management Science, 2020, 76, 3926-3934.	1.7	4
11	Cinmethylin controls multiple herbicideâ€resistant <i>Lolium rigidum</i> and its wheat selectivity is P450â€based. Pest Management Science, 2020, 76, 2601-2608.	1.7	28
12	Evolutionary epidemiology in the field: a proactive approach for identifying herbicide resistance in problematic crop weeds. New Phytologist, 2019, 223, 1056-1058.	3.5	6
13	Herbicide resistance gene flow in weeds: Under-estimated and under-appreciated. Agriculture, Ecosystems and Environment, 2019, 283, 106566.	2.5	38
14	The power and potential of genomics in weed biology and management. Pest Management Science, 2018, 74, 2216-2225.	1.7	76
15	Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pesticide Biochemistry and Physiology, 2018, 148, 74-80.	1.6	45
16	Weed resistance to synthetic auxin herbicides. Pest Management Science, 2018, 74, 2265-2276.	1.7	113
17	Front Cover: Cover Image, Volume 74, Issue 10. Pest Management Science, 2018, 74, i.	1.7	0
18	Non-target-site glyphosate resistance in Echinochloa colona from Western Australia. Crop Protection. 2018, 112, 257-263.	1.0	15

ROBERTO BUSI

#	Article	IF	CITATIONS
19	Enhanced Trifluralin Metabolism Can Confer Resistance in <i>Lolium rigidum</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 7589-7596.	2.4	18
20	Inheritance of 2,4-D resistance traits in multiple herbicide- resistant Raphanus raphanistrum populations. Plant Science, 2017, 257, 1-8.	1.7	20
21	Can herbicide safeners allow selective control of weedy rice infesting rice crops?. Pest Management Science, 2017, 73, 71-77.	1.7	18
22	Phorate can reverse P450 metabolism-based herbicide resistance in <i>Lolium rigidum</i> . Pest Management Science, 2017, 73, 410-417.	1.7	57
23	Crossâ€resistance to prosulfocarb + <i>S</i> â€metolachlor and pyroxasulfone selected by either herbicide in <i>Lolium rigidum</i> . Pest Management Science, 2016, 72, 1664-1672.	1.7	29
24	Response to low-dose herbicide selection in self-pollinated <i>Avena fatua</i> . Pest Management Science, 2016, 72, 603-608.	1.7	29
25	Glyphosate resistance in <i>Echinochloa colona</i> : phenotypic characterisation and quantification of selection intensity. Pest Management Science, 2016, 72, 67-73.	1.7	15
26	Transgenic glyphosate-resistant canola (Brassica napus) can persist outside agricultural fields in Australia. Agriculture, Ecosystems and Environment, 2016, 220, 28-34.	2.5	28
27	Agricultural Weed Research: A Critique and Two Proposals. Weed Science, 2014, 62, 672-678.	0.8	30
28	Herbicide resistance modelling: past, present and future. Pest Management Science, 2014, 70, 1394-1404.	1.7	63
29	Expanding the ecoâ€evolutionary context of herbicide resistance research. Pest Management Science, 2014, 70, 1385-1393.	1.7	104
30	Resistance to herbicides inhibiting the biosynthesis of veryâ€longâ€chain fatty acids. Pest Management Science, 2014, 70, 1378-1384.	1.7	44
31	No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta, 2014, 239, 793-801.	1.6	97
32	<scp>RNA</scp> ‣eq transcriptome analysis to identify genes involved in metabolismâ€based diclofop resistance in <i>Lolium rigidum</i> . Plant Journal, 2014, 78, 865-876.	2.8	185
33	Inheritance of evolved resistance to a novel herbicide (pyroxasulfone). Plant Science, 2014, 217-218, 127-134.	1.7	36
34	Herbicideâ€resistant weeds: from research and knowledge to future needs. Evolutionary Applications, 2013, 6, 1218-1221.	1.5	108
35	Evolved polygenic herbicide resistance in <i><scp>L</scp>olium rigidum</i> by lowâ€dose herbicide selection within standing genetic variation. Evolutionary Applications, 2013, 6, 231-242.	1.5	94
36	Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant <i>Loliumrigidum</i> . Pest Management Science, 2013, 69, 1379-1384.	1.7	41

ROBERTO BUSI

#	Article	IF	CITATIONS
37	Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection at low doses. Weed Research, 2012, 52, 489-499.	0.8	95
38	Simulation modelling identifies polygenic basis of herbicide resistance in a weed population and predicts rapid evolution of herbicide resistance at low herbicide rates. Crop Protection, 2012, 40, 114-120.	1.0	15
39	An Herbicide-Susceptible Rigid Ryegrass (<i>Lolium rigidum</i>) Population Made Even More Susceptible. Weed Science, 2012, 60, 101-105.	0.8	12
40	Rapid Evolution of Herbicide Resistance by Low Herbicide Dosages. Weed Science, 2011, 59, 210-217.	0.8	136
41	Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity, 2011, 106, 817-824.	1.2	99
42	Gene flow increases the initial frequency of herbicide resistance alleles in unselected Lolium rigidum populations. Agriculture, Ecosystems and Environment, 2011, 142, 403-409.	2.5	24
43	Reduced sensitivity to paraquat evolves under selection with low glyphosate doses in Lolium rigidum. Agronomy for Sustainable Development, 2011, 31, 525-531.	2.2	21
44	Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity, 2009, 103, 318-325.	1.2	119
45	Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum. Theoretical and Applied Genetics, 2008, 117, 1281-1290.	1.8	82
46	Patterns Of Resistance To Als Herbicides In Smallflower Umbrella Sedge (Cyperus Difformis) And Ricefield Bulrush (Schoenoplectus Mucronatus). Weed Technology, 2006, 20, 1004-1014.	0.4	29