Roberto Busi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712832/publications.pdf

Version: 2024-02-01

46 papers

2,149 citations

236912 25 h-index 233409 45 g-index

48 all docs 48 docs citations

48 times ranked

1514 citing authors

#	Article	IF	CITATIONS
1	<scp>RNA</scp> â€Seq transcriptome analysis to identify genes involved in metabolismâ€based diclofop resistance in <i>Lolium rigidum</i> . Plant Journal, 2014, 78, 865-876.	5.7	185
2	Rapid Evolution of Herbicide Resistance by Low Herbicide Dosages. Weed Science, 2011, 59, 210-217.	1.5	136
3	Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity, 2009, 103, 318-325.	2.6	119
4	Weed resistance to synthetic auxin herbicides. Pest Management Science, 2018, 74, 2265-2276.	3.4	113
5	Herbicideâ€resistant weeds: from research and knowledge to future needs. Evolutionary Applications, 2013, 6, 1218-1221.	3.1	108
6	Expanding the ecoâ€evolutionary context of herbicide resistance research. Pest Management Science, 2014, 70, 1385-1393.	3.4	104
7	Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity, 2011, 106, 817-824.	2.6	99
8	No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta, 2014, 239, 793-801.	3.2	97
9	Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection at low doses. Weed Research, 2012, 52, 489-499.	1.7	95
10	Evolved polygenic herbicide resistance in <i><scp>L</scp>olium rigidum</i> by lowâ€dose herbicide selection within standing genetic variation. Evolutionary Applications, 2013, 6, 231-242.	3.1	94
11	Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum. Theoretical and Applied Genetics, 2008, 117, 1281-1290.	3.6	82
12	The power and potential of genomics in weed biology and management. Pest Management Science, 2018, 74, 2216-2225.	3.4	76
13	Rotations and mixtures of soilâ€applied herbicides delay resistance. Pest Management Science, 2020, 76, 487-496.	3.4	65
14	Herbicide resistance modelling: past, present and future. Pest Management Science, 2014, 70, 1394-1404.	3.4	63
15	Phorate can reverse P450 metabolism-based herbicide resistance in <i>Lolium rigidum</i> . Pest Management Science, 2017, 73, 410-417.	3.4	57
16	Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pesticide Biochemistry and Physiology, 2018, 148, 74-80.	3.6	45
17	Resistance to herbicides inhibiting the biosynthesis of veryâ€longâ€chain fatty acids. Pest Management Science, 2014, 70, 1378-1384.	3.4	44
18	Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant <i>Loliumrigidum</i> <pest 1379-1384.<="" 2013,="" 69,="" management="" science,="" td=""><td>3.4</td><td>41</td></pest>	3.4	41

#	Article	IF	Citations
19	Herbicide resistance gene flow in weeds: Under-estimated and under-appreciated. Agriculture, Ecosystems and Environment, 2019, 283, 106566.	5.3	38
20	Inheritance of evolved resistance to a novel herbicide (pyroxasulfone). Plant Science, 2014, 217-218, 127-134.	3.6	36
21	Can new herbicide discovery allow weed management to outpace resistance evolution?. Pest Management Science, 2021, 77, 3036-3041.	3.4	35
22	Agricultural Weed Research: A Critique and Two Proposals. Weed Science, 2014, 62, 672-678.	1.5	30
23	Patterns Of Resistance To Als Herbicides In Smallflower Umbrella Sedge (Cyperus Difformis) And Ricefield Bulrush (Schoenoplectus Mucronatus). Weed Technology, 2006, 20, 1004-1014.	0.9	29
24	Crossâ€resistance to prosulfocarb + <i>S</i> â€metolachlor and pyroxasulfone selected by either herbicide in <i>Lolium rigidum</i> . Pest Management Science, 2016, 72, 1664-1672.	3.4	29
25	Response to low-dose herbicide selection in self-pollinated <i>Avena fatua </i> . Pest Management Science, 2016, 72, 603-608.	3.4	29
26	Transgenic glyphosate-resistant canola (Brassica napus) can persist outside agricultural fields in Australia. Agriculture, Ecosystems and Environment, 2016, 220, 28-34.	5.3	28
27	Cinmethylin controls multiple herbicideâ€resistant <i>Lolium rigidum</i> and its wheat selectivity is P450â€based. Pest Management Science, 2020, 76, 2601-2608.	3.4	28
28	Herbicide resistance management strategies: how do they compare with those for insecticides, fungicides and antibiotics? Pest Management Science, 2021, 77, 3049-3056.	3.4	25
29	Gene flow increases the initial frequency of herbicide resistance alleles in unselected Lolium rigidum populations. Agriculture, Ecosystems and Environment, 2011, 142, 403-409.	5.3	24
30	Reduced sensitivity to paraquat evolves under selection with low glyphosate doses in Lolium rigidum. Agronomy for Sustainable Development, 2011, 31, 525-531.	5.3	21
31	Inheritance of 2,4-D resistance traits in multiple herbicide- resistant Raphanus raphanistrum populations. Plant Science, 2017, 257, 1-8.	3.6	20
32	Can herbicide safeners allow selective control of weedy rice infesting rice crops?. Pest Management Science, 2017, 73, 71-77.	3.4	18
33	Enhanced Trifluralin Metabolism Can Confer Resistance in <i>Lolium rigidum</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 7589-7596.	5.2	18
34	Are herbicide mixtures unaffected by resistance? A case study with <i>Lolium rigidum</i> . Weed Research, 2021, 61, 92-99.	1.7	16
35	Simulation modelling identifies polygenic basis of herbicide resistance in a weed population and predicts rapid evolution of herbicide resistance at low herbicide rates. Crop Protection, 2012, 40, 114-120.	2.1	15
36	Glyphosate resistance in <i>Echinochloa colona</i> : phenotypic characterisation and quantification of selection intensity. Pest Management Science, 2016, 72, 67-73.	3.4	15

#	Article	IF	CITATIONS
37	Non-target-site glyphosate resistance in Echinochloa colona from Western Australia. Crop Protection, 2018, 112, 257-263.	2.1	15
38	An Herbicide-Susceptible Rigid Ryegrass (<i>Lolium rigidum</i>) Population Made Even More Susceptible. Weed Science, 2012, 60, 101-105.	1.5	12
39	Herbicide resistance across the <scp>Australi</scp> <scp>an</scp> continent. Pest Management Science, 2021, 77, 5139-5148.	3.4	12
40	Pyroxasulfone-Resistant Annual Ryegrass (<i>Lolium rigidum</i>) Has Enhanced Capacity for Glutathione Transferase-Mediated Pyroxasulfone Conjugation. Journal of Agricultural and Food Chemistry, 2021, 69, 6414-6422.	5.2	9
41	Transfer of resistance alleles from herbicide-resistant to susceptible grass weeds via pollen-mediated gene flow. Weed Technology, 2021, 35, 869-885.	0.9	7
42	Evolutionary epidemiology in the field: a proactive approach for identifying herbicide resistance in problematic crop weeds. New Phytologist, 2019, 223, 1056-1058.	7.3	6
43	Loss of trifluralin metabolic resistance in Lolium rigidum plants exposed to prosulfocarb recurrent selection. Pest Management Science, 2020, 76, 3926-3934.	3.4	4
44	Enhanced production of waterâ€soluble cinmethylin metabolites by <i>Lolium rigidum</i> populations with reduced cinmethylin sensitivity. Pest Management Science, 2022, 78, 3173-3182.	3.4	4
45	Rapid On-Farm Testing of Resistance in Lolium rigidum to Key Pre- and Post-Emergence Herbicides. Plants, 2021, 10, 1879.	3.5	1
46	Front Cover: Cover Image, Volume 74, Issue 10. Pest Management Science, 2018, 74, i.	3.4	O