Mark Van der Auweraer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712810/publications.pdf

Version: 2024-02-01

188 papers 7,891 citations

50 h-index 80 g-index

191 all docs

191 docs citations

191 times ranked

7997 citing authors

#	Article	IF	CITATIONS
1	Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2368-2372.	3.3	273
2	One Building Block, Two Different Supramolecular Surfaceâ€Confined Patterns: Concentration in Control at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2008, 47, 2964-2968.	7.2	273
3	Photophysical Properties of Borondipyrromethene Analogues in Solution. Journal of Physical Chemistry A, 2005, 109, 7371-7384.	1.1	262
4	Solvent and pH Dependent Fluorescent Properties of a Dimethylaminostyryl Borondipyrromethene Dye in Solution. Journal of Physical Chemistry A, 2006, 110, 5998-6009.	1.1	222
5	Structural Transformation of a Two-Dimensional Molecular Network in Response to Selective Guest Inclusion. Angewandte Chemie - International Edition, 2007, 46, 2831-2834.	7.2	182
6	Temperature-Induced Structural Phase Transitions in a Two-Dimensional Self-Assembled Network. Journal of the American Chemical Society, 2013, 135, 12068-12075.	6.6	180
7	Photophysical Pathways in Highly Sensitive Cs ₂ AgBiBr ₆ Doubleâ€Perovskite Singleâ€Crystal Xâ€Ray Detectors. Advanced Materials, 2018, 30, e1804450.	11.1	173
8	Disorder in Charge Transport in doped polymers. Advanced Materials, 1994, 6, 199-213.	11.1	171
9	Characterization of Fluorescence in Heat-Treated Silver-Exchanged Zeolites. Journal of the American Chemical Society, 2009, 131, 3049-3056.	6.6	170
10	Molecular structure and the temperature-dependent radiative rates in Twisted Intramolecular Charge-Transfer and exciplex systems. The Journal of Physical Chemistry, 1991, 95, 2083-2092.	2.9	162
11	Boron Dipyrromethene Analogs with Phenyl, Styryl, and Ethynylphenyl Substituents:  Synthesis, Photophysics, Electrochemistry, and Quantum-Chemical Calculations. Journal of Physical Chemistry A, 2007, 111, 8588-8597.	1.1	126
12	1,7-Disubstituted Boron Dipyrromethene (BODIPY) Dyes: Synthesis and Spectroscopic Properties. Journal of Organic Chemistry, 2011, 76, 8168-8176.	1.7	116
13	Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14343-14348.	3.3	108
14	New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation. Review of Scientific Instruments, 2001, 72, 36-40.	0.6	105
15	Parameters Influencing the On- and Off-Times in the Fluorescence Intensity Traces of Single Cyanine Dye Molecules. Journal of Physical Chemistry A, 2002, 106, 4808-4814.	1.1	103
16	Host Matrix Dependence on the Photophysical Properties of Individual Conjugated Polymer Chains. Macromolecules, 2003, 36, 500-507.	2.2	101
17	Excited-State Dynamics in the Enhanced Green Fluorescent Protein Mutant Probed by Picosecond Time-Resolved Single Photon Counting Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 4999-5006.	1.2	100
18	Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality: Synthesis, Solvatochromism, and Metal Ion Complex Formation. Journal of Physical Chemistry A, 2008, 112, 6104-6114.	1.1	100

#	Article	IF	CITATIONS
19	Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochemical and Photobiological Sciences, 2010, 9, 996-1008.	1.6	100
20	A versatile, modular synthesis of monofunctionalized BODIPY dyes. Chemical Communications, 2009, , 4515 .	2.2	99
21	Synthesis, Spectroscopy, Crystal Structure, Electrochemistry, and Quantum Chemical and Molecular Dynamics Calculations of a 3-Anilino Difluoroboron Dipyrromethene Dye. Journal of Physical Chemistry A, 2009, 113, 439-447.	1.1	98
22	Solvent-dependent photophysical properties of borondipyrromethene dyes in solution. Chemical Physics Letters, 2006, 420, 562-568.	1.2	96
23	Photoinduced Electron Transfer in a Rigid First Generation Triphenylamine Core Dendrimer Substituted with a Peryleneimide Acceptor. Journal of the American Chemical Society, 2002, 124, 9918-9925.	6.6	94
24	Photophysical study of bay substituted perylenediimides. Photochemical and Photobiological Sciences, 2008, 7, 1509-1521.	1.6	93
25	Emerging Solventâ€Induced Homochirality by the Confinement of Achiral Molecules Against a Solid Surface. Angewandte Chemie - International Edition, 2008, 47, 4997-5001.	7.2	90
26	Patterned film growth of metal–organic frameworks based on galvanic displacement. Chemical Communications, 2010, 46, 3735.	2.2	86
27	Energy and Electron Transfer in Ethynylene Bridged Perylene Diimide Multichromophores. Journal of Physical Chemistry C, 2007, 111, 4861-4870.	1.5	83
28	Photophysical Properties of BODIPY-Derived Hydroxyaryl Fluorescent pH Probes in Solution. ChemPhysChem, 2005, 6, 2343-2351.	1.0	81
29	Vicarious Nucleophilic Substitution of α-Hydrogen of BODIPY and Its Extension to Direct Ethenylation. Organic Letters, 2011, 13, 1470-1473.	2.4	80
30	Influence of alcohols and alkanes on the aggregation behavior of ionic surfactants in water. Langmuir, 1990, 6, 628-637.	1.6	78
31	Organic Mixed Valence Systems. II. Two-Centers and Three-Centers Compounds with Meta Connections around a Central Phenylene Ring. The Journal of Physical Chemistry, 1996, 100, 17079-17082.	2.9	77
32	Thermally activated LTA(Li)–Ag zeolites with water-responsive photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 11857-11867.	2.7	70
33	Synthesis and photophysical characterization of chalcogen substituted BODIPY dyes. New Journal of Chemistry, 2009, 33, 1490.	1.4	69
34	Influence of Structural and Rotational Isomerism on the Triplet Blinking of Individual Dendrimer Molecules. Angewandte Chemie - International Edition, 2001, 40, 4643-4648.	7.2	68
35	Second-Harmonic Generation in GFP-like Proteins. Journal of the American Chemical Society, 2008, 130, 15713-15719.	6.6	66
36	Scanning Tunneling Microscopy-Induced Reversible Phase Transformation in the Two-Dimensional Crystal of a Positively Charged Discotic Polycyclic Aromatic Hydrocarbon. Journal of the American Chemical Society, 2011, 133, 5686-5688.	6.6	64

#	Article	IF	CITATIONS
37	8-HaloBODIPYs and Their 8-(C, N, O, S) Substituted Analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2014, 118, 1576-1594.	1.1	62
38	Single-Molecule Conformations Probe Free Volume in Polymers. Journal of the American Chemical Society, 2004, 126, 2296-2297.	6.6	61
39	3,5-Dianilino Substituted Difluoroboron Dipyrromethene: Synthesis, Spectroscopy, Photophysics, Crystal Structure, Electrochemistry, and Quantum-Chemical Calculations. Journal of Physical Chemistry C, 2009, 113, 11731-11740.	1.5	61
40	Photoluminescence Intensity Fluctuations and Electric-Field-Induced Photoluminescence Quenching in Individual Nanoclusters of Poly(phenylenevinylene). ChemPhysChem, 2003, 4, 260-267.	1.0	60
41	Controlling the Fluorescence Resonant Energy Transfer by Photonic Crystal Band Gap Engineering. Chemistry of Materials, 2007, 19, 5547-5552.	3.2	59
42	Singlet-Singlet Annihilation in Multichromophoric Peryleneimide Dendrimers, Determined by Fluorescence Upconversion. ChemPhysChem, 2001, 2, 49-55.	1.0	58
43	A Microscopic Model for the Fluctuations of Local Field and Spontaneous Emission of Single Molecules in Disordered Media. ChemPhysChem, 2005, 6, 81-91.	1.0	58
44	Solid-state assemblies and optical properties of conjugated oligomers combining fluorene and thiophene units. Journal of Materials Chemistry, 2007, 17, 728-735.	6.7	58
45	Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes. RSC Advances, 2015, 5, 89375-89388.	1.7	58
46	The Origin of Heterogeneity of Polymer Dynamics near the Glass Temperature As Probed by Defocused Imaging. Macromolecules, 2011, 44, 9703-9709.	2.2	57
47	Reversible Intramolecular Electron Transfer at the Single-Molecule Level. Angewandte Chemie - International Edition, 2003, 42, 4209-4214.	7.2	56
48	Giant molecular spoked wheels in giant voids: two-dimensional molecular self-assembly goes big. Chemical Communications, 2008, , 3897.	2.2	55
49	Tetraarylporphyrins in mixed Langmuir-Blodgett films: steady-state and time-resolved fluorescence studies. Langmuir, 1991, 7, 1483-1490.	1.6	54
50	Photoinduced Intramolecular Charge Transfer in Diphenylamino-Substituted Triphenylbenzene, Biphenyl, and Fluorene. Journal of Physical Chemistry A, 1997, 101, 8157-8165.	1.1	52
51	A ratiometric, fluorescent BODIPY-based probe for transition and heavy metal ions. RSC Advances, 2016, 6, 7806-7816.	1.7	52
52	Compartmental analysis of the fluorescence decay surface of the exciplex formation between 1-methylpyrene and triethylamine. The Journal of Physical Chemistry, 1991, 95, 9375-9381.	2.9	49
53	Visualization of Membrane Rafts Using a Perylene Monoimide Derivative and Fluorescence Lifetime Imaging. Biophysical Journal, 2007, 93, 2877-2891.	0.2	49
54	Comparison between J-aggregates in a self-assembled multilayer and polymer-bound J-aggregates in solution: a steady-state and time-resolved spectroscopic study. Photochemical and Photobiological Sciences, 2002, 1, 395-406.	1.6	47

#	Article	lF	Citations
55	Electron Transfer at the Single-Molecule Level in a Triphenylamine-Perylene Imide Molecule. ChemPhysChem, 2005, 6, 942-948.	1.0	46
56	Delayed electron–hole pair recombination in iron(<scp>iii</scp>)-oxo metal–organic frameworks. Physical Chemistry Chemical Physics, 2014, 16, 5044-5047.	1.3	46
57	Probing the Influence of O2on Photoinduced Reversible Electron Transfer in Perylenediimide-Triphenylamine-Based Dendrimers by Single-Molecule Spectroscopy. Angewandte Chemie - International Edition, 2004, 43, 6116-6120.	7.2	43
58	Photophysics of 3,5-diphenoxy substituted BODIPY dyes in solution. Photochemical and Photobiological Sciences, 2007, 6, 1061.	1.6	42
59	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	3.6	42
60	Simultaneous analysis of time-resolved fluorescence quenching data in aqueous micellar systems in the presence and absence of added alcohol. The Journal of Physical Chemistry, 1989, 93, 3244-3250.	2.9	41
61	Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy. Photochemical and Photobiological Sciences, 2008, 7, 597-604.	1.6	40
62	Oligo(<i>p</i> â€phenylene ethynylene)–BODIPY Derivatives: Synthesis, Energy Transfer, and Quantumâ€Chemical Calculations. Chemistry - A European Journal, 2011, 17, 13247-13257.	1.7	40
63	Photophysics of 2-phenyl-3-indolocarbocyanine dyes. The Journal of Physical Chemistry, 1986, 90, 1169-1175.	2.9	38
64	Solvatochromism of BODIPY-Schiff Dye. Journal of Physical Chemistry B, 2015, 119, 2576-2584.	1.2	37
65	Intramolecular Energy Transfer in Bis-porphyrins Containing Diimine Chelates of Variable Geometry as Spacers. Chemistry - A European Journal, 1999, 5, 2089-2100.	1.7	36
66	CTâ^'CT Annihilation in Rigid Perylene End-Capped Pentaphenylenes. Journal of the American Chemical Society, 2007, 129, 610-619.	6.6	36
67	Supramolecular Hydrophobicâ^'Hydrophilic Nanopatterns at Electrified Interfaces. Nano Letters, 2007, 7, 791-795.	4.5	35
68	Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 179-188.	3.0	35
69	Single Molecule Spectroscopy as a Probe for Dyeâ^'Polymer Interactions. Journal of the American Chemical Society, 2005, 127, 12011-12020.	6.6	34
70	Photophysical study of photoinduced electron transfer in a bis-thiophene substituted peryleneimide. Photochemical and Photobiological Sciences, 2005, 4, 61-68.	1.6	34
71	Bottom-up assembly of high density molecular nanowire cross junctions at a solid/liquid interface. Chemical Communications, 2008, , 703-705.	2.2	34
72	Tip-Induced Chemical Manipulation of Metal Porphyrins at a Liquid/Solid Interface. Journal of the American Chemical Society, 2014, 136, 17418-17421.	6.6	34

#	Article	IF	Citations
7 3	Change in the micellar aggregation number or in the size distribution? A dynamic fluorescence quenching study of aqueous cetyltrimethylammonium chloride. Langmuir, 1993, 9, 2289-2296.	1.6	33
74	Influence of the Substitution on Intramolecular Exciplex Formation between Pyrene and Indole Moieties. The Journal of Physical Chemistry, 1994, 98, 1532-1543.	2.9	33
7 5	Spectral narrowing of emission in self-assembled colloidal photonic superlattices. Journal of Applied Physics, 2006, 100, 123112.	1.1	33
76	Laser-induced optoacoustic studies of the non-radiative deactivation of ICT probes DMABN and DMABA. Chemical Physics Letters, 1997, 264, 265-272.	1.2	32
77	Detection of RNA Hybridization by Pyreneâ€Labeled Probes. ChemBioChem, 2009, 10, 1175-1185.	1.3	32
78	Two-Leg Molecular Ladders Formed by Hierarchical Self-Assembly of an Organic Radical. Journal of the American Chemical Society, 2009, 131, 6246-6252.	6.6	31
79	Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solidâ€ S tate Lighting. Advanced Optical Materials, 2020, 8, 2000670.	3.6	31
80	Energy transfer within perylene-terrylene dendrimers evidenced by polychromatic transient absorption measurements. Photochemical and Photobiological Sciences, 2003, 2, 177-186.	1.6	30
81	Excited-State Localization in a 3-Fold-Symmetric Molecule as Probed by Electroabsorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 16834-16840.	1.2	30
82	Wideband fluorescence-based thermometry by neural network recognition: Photothermal application with $10 \hat{a} \in \infty$ ns time resolution. Journal of Applied Physics, 2015, 118, .	1.1	30
83	Silver Zeolite Compositesâ€Based LEDs: A Novel Solidâ€State Lighting Approach. Advanced Functional Materials, 2017, 27, 1606411.	7.8	30
84	Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots. Journal of Applied Physics, 2014, 116, 094305.	1.1	29
85	Photophysics and stability of cyano-substituted boradiazaindacene dyes. Photochemical and Photobiological Sciences, 2009, 8, 1006-1015.	1.6	28
86	Steering the Conformation and Chiroptical Properties of Poly(dithienopyrrole)s Substituted with Chiral OPV Side Chains Macromolecules, 2010, 43, 2157-2168.	2.2	28
87	Shaping the Optical Properties of Silver Clusters Inside Zeolite A via Guest–Host–Guest Interactions. Journal of Physical Chemistry Letters, 2018, 9, 5344-5350.	2.1	28
88	Scanning Tunneling Microscopy and Spectroscopy of Donor-Acceptor-Donor Triads at the Liquid/Solid Interface. ChemPhysChem, 2005, 6, 2389-2395.	1.0	27
89	Low temperature X-ray diffraction analysis, electronic density distribution and photophysical properties of bidentate N,O-donor salicylaldehyde Schiff bases and zinc complexes in solid state. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 117-129.	2.0	27
90	Effect of the substitution position (2, 3 or 8) on the spectroscopic and photophysical properties of BODIPY dyes with a phenyl, styryl or phenylethynyl group. RSC Advances, 2016, 6, 102899-102913.	1.7	27

#	Article	IF	CITATIONS
91	Influence of Molecular Structure on the Aggregating Properties of Thiacarbocyanine Dyes Adsorbed to Langmuir Films at the Airâ^'Water Interface. Langmuir, 2000, 16, 9518-9526.	1.6	26
92	Reactions of 5-amino-1,2-azoles with aromatic and heterocyclic o-chloroaldehydes: [1+1] versus [2+1] cyclocondensation. Tetrahedron, 2001, 57, 9123-9129.	1.0	26
93	Fluorescence spectra shape based dynamic thermometry. Applied Physics Letters, 2014, 104, .	1.5	26
94	Acidâ€Sensitive BODIPY Dyes: Synthesis through Pdâ€Catalyzed Direct C(sp ³)â^'H Arylation and Photophysics. Chemistry - A European Journal, 2017, 23, 4687-4699.	1.7	25
95	Structural and Photophysical Characterization of Ag Clusters in LTA Zeolites. Journal of Physical Chemistry C, 2019, 123, 10630-10638.	1.5	25
96	Photoacoustic temperature imaging based on multi-wavelength excitation. Photoacoustics, 2019, 13, 33-45.	4.4	25
97	lodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. Nanoscale, 2020, 12, 11916-11926.	2.8	25
98	The Influence of Meso-Substitution on the Photophysical Behavior of Some Thiacarbocyanine Dyes in Dilute Solution. Journal of Physical Chemistry A, 2001, 105, 10196-10203.	1.1	24
99	Photophysical Study of Electron-Transfer and Energy-Hopping Processes in First-Generation Monoand Multichromophoric Triphenylamine Core Dendrimers. Journal of Physical Chemistry B, 2004, 108, 10721-10731.	1.2	24
100	Electroluminescent characteristics of scandium and yttrium 8-quinolinolates. Journal of Applied Physics, 2008, 104, 053706.	1.1	24
101	One-Pot Synthesis and Characterization of All-Conjugated Poly(3-alkylthiophene)- <i>block</i> -poly(dialkylthieno[3,4- <i>b</i> -poly(dialkylthieno[3,4- <i>b</i> -poly(dialkylthieno[3,4- <i>b</i> -poly(dialkylthieno[3,4- <i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<i>-poly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<poly(dialkylthieno[3,4-<poly(dialkylthieno[3,4-<< td=""><td>2.2</td><td>24</td></ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<ipoly(dialkylthieno[3,4-<poly(dialkylthieno[3,4-<poly(dialkylthieno[3,4-<<></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.2	24
102	Influence of the Molecular Structure on the Lateral Distribution of Xanthene Dyes in Langmuirâ ⁻ Blodgett Films. Langmuir, 1999, 15, 8465-8473.	1.6	23
103	Diazadithia[7]helicenes: Synthetic Exploration, Solidâ€State Structure, and Properties. Chemistry - A European Journal, 2013, 19, 12077-12085.	1.7	23
104	Nanometer space resolved photochemistry. Chemical Communications, 2001, , 585-592.	2.2	22
105	Determination of the nature of the lowest triplet state of the intramolecular charge-transfer probes DMABN and DMABA by laser-induced optoacoustic spectroscopy. Chemical Physics Letters, 1997, 279, 303-308.	1.2	21
106	Revealing the Excited-State Dynamics of the Fluorescent Protein Dendra2. Journal of Physical Chemistry B, 2013, 117, 2300-2313.	1.2	21
107	Influence of the Deposition Method on the Topography and Spectroscopy of J-Aggregates of a Thiacarbocyanine Dye Adsorbed to a Langmuir Film. Langmuir, 2002, 18, 8407-8417.	1.6	20
108	Excitation Energy Transfer in Dendritic Host-Guest Donor-Acceptor Systems. ChemPhysChem, 2002, 3, 1005-1013.	1.0	20

#	Article	IF	CITATIONS
109	Emission from Zeoliteâ€Occluded Manganese–Diimine Complexes. Chemistry - A European Journal, 1996, 2, 592-597.	1.7	19
110	Improved Spectral Coverage and Fluorescence Quenching in Donor–acceptor Systems Involving Indolo[3â€2â€b]carbazole and Boronâ€dipyrromethene or Diketopyrrolopyrrole. Photochemistry and Photobiology, 2015, 91, 637-653.	1.3	19
111	The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative. Chemical Communications, 2020, 56, 4102-4105.	2.2	19
112	Simultaneous analysis of single-photon timing data with a reference method: Application to a poisson distribution of decay rates. Chemical Physics, 1988, 121, 199-209.	0.9	18
113	Fluorophores-modified silica sphere as emission probe in photonic crystals. Chemical Physics Letters, 2006, 421, 1-4.	1.2	18
114	Charge transport and recombination in P3HT:PbS solar cells. Journal of Applied Physics, 2015, 117, .	1.1	18
115	Facile Morphologyâ€Controlled Synthesis of Organolead Iodide Perovskite Nanocrystals Using Binary Capping Agents. ChemNanoMat, 2017, 3, 223-227.	1.5	18
116	Micellar properties of aqueous solutions of hexadecyltrimethylammonium salts in the presence of nonionic polymer. Macromolecules, 1993, 26, 687-694.	2.2	17
117	Formation of Highly Oriented Domains of a Thiacarbocyanine Dye in a Monolayer at the Airâ^Water Interface. Langmuir, 2002, 18, 1641-1648.	1.6	17
118	Confocal Fluorescence Microscopy and AFM of Thiacyanine J Aggregates in Langmuir-Schaefer Monolayers. Langmuir, 2003, 19, 9831-9840.	1.6	17
119	Charge carrier mobility in CBP films doped with Ir(ppy) 3., 2006, 6192, 419.		17
120	Luminescent silver–lithium-zeolite phosphors for near-ultraviolet LED applications. Journal of Materials Chemistry C, 2019, 7, 14366-14374.	2.7	17
121	The micelle-water monomer exchange process in solutions of ionic surfactants measured by transient fluorescence quenching. Chemical Physics Letters, 1989, 155, 587-592.	1.2	16
122	Ligand exchange leads to efficient triplet energy transfer to CdSe/ZnS Q-dots in a poly(<i>N</i> -vinylcarbazole) matrix nanocomposite. Journal of Applied Physics, 2013, 113, .	1.1	16
123	"Concentration-in-Control―self-assembly concept at the liquid–solid interface challenged. Chemical Science, 2021, 12, 13167-13176.	3.7	16
124	Hole transport in blue and white emitting polymers. Journal of Applied Physics, 2008, 103, 113711.	1.1	15
125	Morpholinecarbonyl-Rhodamine 110 Based Substrates for the Determination of Protease Activity with Accurate Kinetic Parameters. Bioconjugate Chemistry, 2011, 22, 1932-1938.	1.8	15
126	Selfâ€Assembling Azaindole Organogel for Organic Lightâ€Emitting Devices (OLEDs). Advanced Functional Materials, 2017, 27, 1702176.	7.8	15

#	Article	IF	Citations
127	Simultaneous analysis of fluorescence decay curves for the one-step determination of the mean aggregation number of aqueous micelles. Chemical Physics Letters, 1988, 146, 337-342.	1.2	14
128	Excited State Dynamics of Photoswitchable Fluorescent Protein Padron. Journal of Physical Chemistry B, 2013, 117, 16422-16427.	1.2	14
129	Silver Zeolite Composite-Based LEDs: Origin of Electroluminescence and Charge Transport. ACS Applied Materials & Distribution (1997) Applied & Distribution (1997) Applied & Distribution (1997) Applied & Dis	4.0	14
130	Anatomy of On-Surface Synthesized Boroxine Two-Dimensional Polymers. ACS Nano, 2020, 14, 2354-2365.	7.3	14
131	Determination of the Photoinduced Electron Transfer Rate Constant in Langmuirâ'Blodgett Films by Time-Resolved Fluorescence. Langmuir, 1999, 15, 4641-4647.	1.6	13
132	Single Photon Emission from a Dendrimer Containing Eight Perylene Diimide Chromophores. Australian Journal of Chemistry, 2004, 57, 1169.	0.5	13
133	Simultaneous liquid chromatography determination of polyamines and arylalkyl monoamines. Analytical Biochemistry, 2006, 354, 127-131.	1.1	13
134	5,10-Dihydrobenzo[<i>a</i>]indolo[2,3- <i>c</i>]carbazoles as Novel OLED Emitters. Journal of Physical Chemistry B, 2019, 123, 1400-1411.	1.2	13
135	On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles. Chemical Physics Letters, 2009, 469, 110-114.	1.2	12
136	Self-Assembly of a Functionalized Alkylated Isophthalic Acid at the Au(111)/Electrolyte Interface: Structure and Dynamics. Journal of Physical Chemistry C, 2009, 113, 11567-11574.	1.5	12
137	The synthesis and spectroscopic characterization of poly(p-phenylene ethynylene) with 3-connected BODIPY end groups. Dyes and Pigments, 2011, 88, 372-377.	2.0	12
138	Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots. Journal of Applied Physics, 2015, 118, .	1.1	12
139	Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9798-9805.	4.0	12
140	Synthesis and Spectroscopic Properties of 1,2,3-Triazole BOPAHY Dyes and Their Water-Soluble Triazolium Salts. Journal of Organic Chemistry, 2021, 86, 13774-13782.	1.7	12
141	Hole mobility and trapping in PVK films doped with CdSe/CdS and CdSe quantum dots. Journal of Russian Laser Research, 2008, 29, 526-537.	0.3	11
142	Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 14880-14891.	1.2	11
143	Mechanism of Photosensitized Charge Injection from Organic Dyes Incorporated in Langmuir-Blodgett Films into SnO2. The Journal of Physical Chemistry, 1994, 98, 11745-11750.	2.9	10
144	Generation dependent singlet–singlet annihilation within multichromophoric dendrimers studied by polychromatic transient absorption. Photochemical and Photobiological Sciences, 2003, 2, 1118-1124.	1.6	10

#	Article	lF	Citations
145	Mesoscopic Organization of Two-Dimensional J-Aggregates of Thiacyanine in Langmuirâ^'Schaefer Films. Langmuir, 2004, 20, 11569-11576.	1.6	10
146	Directing the Assembly of Charged Organic Molecules by a Hydrophilicâ^'Hydrophobic Nanostructured Monolayer at Electrified Interfaces. Nano Letters, 2008, 8, 1163-1168.	4.5	10
147	Energy transfer dynamics in organic light emitting diode emission layers doped with triplet emitters. Journal of Applied Physics, 2011, 110, 053712.	1.1	10
148	Identifiability of models for time-resolved fluorescence with underlying distributions of rate constants. Photochemical and Photobiological Sciences, 2014, 13, 422.	1.6	10
149	Impact of the Keto–Enol Tautomeric Equilibrium on the BODIPY Chromophore. Journal of Physical Chemistry A, 2018, 122, 5955-5961.	1.1	10
150	Intramolecular photo-induced electron transfer between pyrene and a xanthene dye. Chemical Physics Letters, 2000, 319, 512-520.	1.2	9
151	Near-Field Interactions between Metal Nanoparticle Surface Plasmons and Molecular Excitons in Thin-Films. Part II: Emission. Journal of Physical Chemistry C, 2012, 116, 24215-24223.	1.5	9
152	Simple Donor–Acceptor Luminogen Based on an Azaindole Derivative as Solid-State Emitter for Organic Light-Emitting Devices. ACS Energy Letters, 2017, 2, 2653-2658.	8.8	9
153	Promising Molecules for Optoelectronic Applications: Synthesis of 5,10â€Dihydrobenzo[<i>a</i> >jindolo[2,3â€xi>c)crbazoles by Scholl Reaction of 1,2â€Bis(indolâ€2â€yl)benzenes. European Journal of Organic Chemistry, 2018, 2018, 4683-4688.	1.2	9
154	Bipolar luminescent azaindole derivative exhibiting aggregation-induced emission for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1222-1227.	2.7	9
155	Photostability of Jaggregates adsorbed on TiO2 nanoparticles and AFM imaging of Jaggregates on a glass surface. International Journal of Photoenergy, 2004, 6, 29-33.	1.4	8
156	Identifiability of Models for Fluorescence Quenching in Aqueous Micellar Systems. ChemPhysChem, 2005, 6, 2352-2358.	1.0	8
157	DEVELOPMENT OF MAGNETIC MATERIALS FOR PHOTONIC APPLICATIONS. Journal of Nonlinear Optical Physics and Materials, 2007, 16, 281-294.	1.1	8
158	Singlet–Singlet Annihilation Leading to a Charge-Transfer Intermediate in Chromophore-End-Capped Pentaphenylenes. ChemPhysChem, 2007, 8, 1386-1393.	1.0	8
159	Photophysical Investigation of Cyano-Substituted Terrylenediimide Derivatives. Journal of Physical Chemistry B, 2014, 118, 14662-14674.	1.2	8
160	Photoinduced Charge Transfer in Hybrid Systems of CulnS ₂ Nanocrystals and Conductive Polymer. Journal of Physical Chemistry C, 2015, 119, 22669-22680.	1.5	8
161	Perovskite-Based Devices: Photophysical Pathways in Highly Sensitive Cs2 AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870353.	11.1	8
162	Development and characterization of BODIPY-derived tracers for fluorescent labeling of the endoplasmic reticulum. Dyes and Pigments, 2020, 176, 108200.	2.0	8

#	Article	IF	Citations
163	Non-conjugated, phenyl assisted coupling in through bond electron transfer in a perylenemonoimide–triphenylamine system. Photochemical and Photobiological Sciences, 2007, 6, 406-415.	1.6	7
164	2D analogues of the inverted hexagonal phase self-assembled from 4,6-dialkoxylated isophthalic acids at solid–liquid interfaces. Nanoscale, 2010, 2, 1773.	2.8	7
165	Investigation of the Q _{<i>x</i>} –Q _{<i>y</i>} Equilibrium in a Metalâ€Free Phthalocyanine. ChemPhysChem, 2015, 16, 3992-3996.	1.0	7
166	Simultaneous analysis of time-resolved fluorescence-quenching data in micellar systems: application to mobile quenchers. Langmuir, 1989, 5, 948-953.	1.6	6
167	Dipolar exciton states of molecules with threefold symmetry. Chemical Physics Letters, 1994, 222, 586-591.	1.2	6
168	Synthesis of (E)-5-(2-arylvinyl)-2-(hetero)arylpyridines, (E)-2-(2-arylvinyl)-5-methoxycarbonylpyridines and (E,E)-2,5-bis(2-arylvinyl)pyridines as polarity and pH probesElectronic supplementary information (ESI) available: details of syntheses and spectroscopic data. See http://www.rsc.org/suppdata/p2/b2/b200446c/. Perkin Transactions II RSC, 2002, , 928-937.	1.1	6
169	SPONTANEOUS EMISSION OF NANO-ENGINEERED FLUOROPHORES IN PHOTONIC CRYSTALS. Journal of Nonlinear Optical Physics and Materials, 2006, 15, 1-8.	1.1	6
170	Study of hole mobility in poly(N-vinylcarbazole) films doped with CdSe/ZnS quantum dots encapsulated by 11-(N-carbazolyl) undecanoic acid (C11). Journal of Applied Physics, 2013, 114, 173704.	1.1	6
171	On the stability of surface-confined nanoporous molecular networks. Journal of Chemical Physics, 2015, 142, 101932.	1.2	6
172	Scanning tunnelling microscopy of a foldamer prototype at the liquid/solid interface: water/Au(111) versus 1-octanol/graphite. New Journal of Chemistry, 2006, 30, 1420.	1.4	5
173	Compartmental analysis in photophysics: Kinetics and identifiability of models for quenching of fluorescent probes in micelles. Mathematical Biosciences, 2007, 209, 624-643.	0.9	5
174	Investigation of probe molecule–polymer interactions. Chemical Physics Letters, 2009, 472, 48-54.	1.2	5
175	Bay-Substituted Thiaza[5]helicenes: Synthesis and Implications on Structural and Spectroscopic Properties. Journal of Organic Chemistry, 2019, 84, 13528-13539.	1.7	5
176	New Metalâ€Free Route towards Imidazoleâ€Substituted Uridine. European Journal of Organic Chemistry, 2020, 2020, 4022-4025.	1.2	5
177	Influence of the Ionization Potential and of the Interfacial Electric Field on Photoinduced Hole Transfer Processes in Langmuirâ€Blodgett Films. Israel Journal of Chemistry, 1991, 31, 169-175.	1.0	4
178	A new class of electron transport compounds: 1,3-bis-dicyanomethylene indanes. Advanced Materials, 1995, 7, 574-576.	11.1	4
179	Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency. ACS Omega, 2016, 1, 1383-1392.	1.6	4
180	Local properties of adsorption sites probed by the emission of fluorophores of different size and shape. Chemical Physics Letters, 1996, 262, 583-588.	1,2	3

#	Article	lF	CITATIONS
181	Ligand exchange and photoluminescence quenching in organic-inorganic blends poly(3-hexylthiophene) P3HT:PbS. Proceedings of SPIE, 2012, , .	0.8	3
182	Triplet harvesting in poly(9â€vinylcarbazole) and poly(9â€(2,3â€epoxypropyl)carbazole) doped with CdSe/ZnS quantum dots encapsulated with 16â€(<i>N</i> ê€earbazolyl) hexadecanoic acid ligands. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 539-551.	2.4	3
183	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Terrylenediimide Dimer. Journal of Physical Chemistry B, 2016, 120, 2333-2342.	1.2	3
184	Dendritic Nucleotides: Interaction with an Aliphatic Acid Monolayer. Chemistry and Biodiversity, 2008, 5, 1675-1682.	1.0	1
185	Frans De Schryver: Forty Years of Photochemistry and Photophysics. ChemPhysChem, 2005, 6, 2215-2217.	1.0	O
186	Photonic superlattices for photonic crystal lasers. Proceedings of SPIE, 2007, , .	0.8	0
187	Electroluminescent Nanoparticles: Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solidâ€State Lighting (Advanced Optical Materials 16/2020). Advanced Optical Materials, 2020, 8, 2070066.	3.6	0
188	Intramolecular fluorescence quenching in porphyrinâ€bearing [2]catenates. Journal of Porphyrins and Phthalocyanines, 2001, 5, 633-644.	0.4	0