Jingsha Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712785/publications.pdf

Version: 2024-02-01

623574 794469 20 758 14 19 h-index citations g-index papers 37 37 37 973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sources and processes of iron aerosols in a megacity in Eastern China. Atmospheric Chemistry and Physics, 2022, 22, 2191-2202.	1.9	22
2	An evaluation of source apportionment of fine OC and PM _{2.5} by multiple methods: APHH-Beijing campaigns as a case study. Faraday Discussions, 2021, 226, 290-313.	1.6	12
3	Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discussions, 2021, 226, 223-238.	1.6	9
4	Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances, 2021, 7, .	4.7	209
5	Atmospheric conditions and composition that influence PM _{2.5} oxidative potential in Beijing, China. Atmospheric Chemistry and Physics, 2021, 21, 5549-5573.	1.9	38
6	Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites. Atmospheric Chemistry and Physics, 2021, 21, 8273-8292.	1.9	15
7	Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model. Atmospheric Chemistry and Physics, 2021, 21, 7321-7341.	1.9	23
8	Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere, 2021, 272, 129632.	4.2	32
9	Characteristics and source attribution of PM2.5 during 2016 G20 Summit in Hangzhou: Efficacy of radical measures to reduce source emissions. Journal of Environmental Sciences, 2021, 106, 47-65.	3.2	16
10	PM2.5-bound silicon-containing secondary organic aerosols (Si-SOA) in Beijing ambient air. Chemosphere, 2021, 288, 132377.	4.2	5
11	A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Science of the Total Environment, 2021, 789, 147741.	3.9	83
12	Sizeâ^'resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components. Environmental Pollution, 2021, 289, 117932.	3.7	10
13	Insight into PM _{2.5} sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing. Atmospheric Chemistry and Physics, 2021, 21, 14703-14724.	1.9	35
14	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	1.2	16
15	Biomass burning and fungal spores as sources of fine aerosols in Yangtze River Delta, China – Using multiple organic tracers to understand variability, correlations and origins. Environmental Pollution, 2019, 251, 155-165.	3.7	24
16	Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS. RSC Advances, 2018, 8, 34136-34150.	1.7	6
17	Characteristics of PM _{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmospheric Chemistry and Physics, 2018, 18, 8849-8871.	1.9	144
18	Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia. Environmental Geochemistry and Health, 2015, 37, 831-841.	1.8	40

#	Article	IF	CITATIONS
19	Could wastewater analysis be a useful tool for China? â€" A review. Journal of Environmental Sciences, 2015, 27, 70-79.	3.2	14
20	Fine Structure in Isotopic Peak Distributions Measured Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Comparison between an Infinity ICR Cell and a Dynamically Harmonized ICR Cell. Journal of the American Society for Mass Spectrometry, 0, , .	1.2	1