
Jiangtao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712077/publications.pdf Version: 2024-02-01

Ιμανιστλο Χιι

#	Article	IF	CITATIONS
1	Unraveling Sequence Effect on Glass Transition Temperatures of Discrete Unconjugated Oligomers. Macromolecular Rapid Communications, 2022, 43, e2100666.	2.0	5
2	Genetically Encoded Synthetic Beta Cells for Insulin Biosynthesis and Release under Hyperglycemic Conditions. Advanced Functional Materials, 2022, 32, .	7.8	10
3	Metalloporphyrin-anchored 2D MOF nanosheets as highly accessible heterogeneous photocatalysts towards cytocompatible living radical polymerization. Chemical Engineering Journal, 2022, 434, 134692.	6.6	18
4	Stereochemistry-Induced Discrimination in Reaction Kinetics of Photo-RAFT Initialization. Macromolecules, 2022, 55, 2463-2474.	2.2	3
5	Two plus One: Combination Therapy Tri-systems Involving Two Membrane-Disrupting Antimicrobial Macromolecules and Antibiotics. ACS Infectious Diseases, 2022, 8, 1480-1490.	1.8	6
6	Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation. Journal of Colloid and Interface Science, 2021, 581, 504-513.	5.0	67
7	pHâ€Gated Activation of Gene Transcription and Translation in Biocatalytic Metal–Organic Framework Artificial Cells. Advanced NanoBiomed Research, 2021, 1, 2000034.	1.7	11
8	Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactorâ€Đependent Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5421-5428.	7.2	98
9	Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactorâ€Dependent Biocatalysis. Angewandte Chemie, 2021, 133, 5481-5488.	1.6	27
10	How does the single unit monomer insertion technique promote kinetic analysis of activation and initiation in photo-RAFT processes?. Polymer Chemistry, 2021, 12, 581-593.	1.9	13
11	PET-RAFT single unit monomer insertion of Î ² -methylstyrene derivatives: RAFT degradation and reaction selectivity. Chemical Communications, 2021, 57, 10759-10762.	2.2	8
12	Significant Influence of Alkyl Substituents in the Alicyclic Rigid Backbone on Solubility and Thermal Stability of Polyarylamide Copolymers. ACS Applied Polymer Materials, 2021, 3, 2120-2130.	2.0	3
13	Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules, 2021, 54, 3430-3446.	2.2	32
14	Influence of Molecular Weight Distribution on the Thermoresponsive Transition of Poly(<i>N</i> â€isopropylacrylamide). Macromolecular Rapid Communications, 2021, 42, e2100212.	2.0	17
15	Towards fluorinated Ruddlesden–Popper perovskites with enhanced physical properties: a study on (3-FC ₆ H ₄ CH ₂ CH ₂ NH ₃) ₂ PbI <sub single crystals. Materials Chemistry Frontiers, 2021, 5, 4645-4657.</sub 	∙4 ≋/ ≌ub>	6
16	Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules, 2021, 22, 4871-4882.	2.6	15
17	Interconvertible and switchable cationic/PET-RAFT copolymerization triggered by visible light. Polymer Journal, 2020, 52, 65-73.	1.3	25
18	Selective and Rapid Lightâ€Induced RAFT Single Unit Monomer Insertion in Aqueous Solution. Macromolecular Rapid Communications, 2020, 41, e1900478.	2.0	22

Jiangtao Xu

#	Article	IF	CITATIONS
19	3D printing of polymeric materials based on photo-RAFT polymerization. Polymer Chemistry, 2020, 11, 641-647.	1.9	70
20	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
21	A self-enhanced and recyclable catalytic system constructed from magnetic bi-nano-bionic enzymes for real-time control of RAFT polymerization. Journal of Materials Chemistry C, 2020, 8, 1301-1308.	2.7	8
22	Designing with Light: Advanced 2D, 3D, and 4D Materials. Advanced Materials, 2020, 32, e1903850.	11.1	125
23	Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments. Biophysics Reports, 2020, 6, 179-192.	0.2	6
24	Chemotaxisâ€Ðriven 2D Nanosheet for Directional Drug Delivery toward the Tumor Microenvironment. Small, 2020, 16, e2002732.	5.2	39
25	Highly sensitive, stretchable and durable strain sensors based on conductive <scp>doubleâ€network</scp> polymer hydrogels. Journal of Polymer Science, 2020, 58, 3069-3081.	2.0	33
26	Soluble, Thermally Stable, and Low Thermal Expansion Polyarylamides Enabled by a Seven-Membered Carbocycle. ACS Applied Polymer Materials, 2020, 2, 5423-5431.	2.0	1
27	Biocompatible and Highly Stretchable PVA/AgNWs Hydrogel Strain Sensors for Human Motion Detection. Advanced Materials Technologies, 2020, 5, 2000426.	3.0	83
28	Robust Strategy for Antibody–Polymer–Drug Conjugation: Significance of Conjugating Orientation and Linker Charge on Targeting Ability. ACS Applied Materials & Interfaces, 2020, 12, 23717-23725.	4.0	10
29	Polymer Synthesis in Continuous Flow Reactors. Progress in Polymer Science, 2020, 107, 101256.	11.8	87
30	Scalable and Recyclable Heterogeneous Organoâ€photocatalysts on Cotton Threads for Organic and Polymer Synthesis. ChemPhotoChem, 2020, 4, 5201-5208.	1.5	7
31	Oxygen Tolerant PET-RAFT Facilitated 3D Printing of Polymeric Materials under Visible LEDs. ACS Applied Polymer Materials, 2020, 2, 782-790.	2.0	73
32	High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules, 2020, 53, 631-639.	2.2	55
33	Sequential and alternating RAFT single unit monomer insertion: model trimers as the guide for discrete oligomer synthesis. Polymer Chemistry, 2020, 11, 4557-4567.	1.9	23
34	Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angewandte Chemie - International Edition, 2019, 58, 5170-5189.	7.2	444
35	Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angewandte Chemie, 2019, 131, 5224-5243.	1.6	108
36	Photoâ€Induced Depolymerisation: Recent Advances and Future Challenges. ChemPhotoChem, 2019, 3, 1059-1076.	1.5	22

#	Article	IF	CITATIONS
37	Single Unit Monomer Insertion: A Versatile Platform for Molecular Engineering through Radical Addition Reactions and Polymerization. Macromolecules, 2019, 52, 9068-9093.	2.2	63
38	Discriminatory Photoactivation of Diastereomeric RAFT Agents. Macromolecules, 2019, 52, 7157-7166.	2.2	14
39	Upscaling single unit monomer insertion to synthesize discrete oligomers. Journal of Polymer Science Part A, 2019, 57, 1947-1955.	2.5	32
40	Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Materials Today, 2019, 28, 10-16.	8.3	73
41	Computer-Guided Discovery of a pH-Responsive Organic Photocatalyst and Application for pH and Light Dual-Gated Polymerization. Journal of the American Chemical Society, 2019, 141, 8207-8220.	6.6	89
42	Unraveling Photocatalytic Mechanism and Selectivity in PETâ€RAFT Polymerization. Advanced Theory and Simulations, 2019, 2, 1900038.	1.3	32
43	Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. Reaction Chemistry and Engineering, 2019, 4, 1216-1228.	1.9	52
44	Exploration of the PETâ€RAFT Initiation Mechanism for Two Commonly Used Photocatalysts. ChemPhotoChem, 2019, 3, 1193-1199.	1.5	38
45	Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules, 2019, 52, 236-248.	2.2	105
46	Precise synthesis of poly(<i>N</i> -acryloyl amino acid) through photoinduced living polymerization. Polymer Chemistry, 2018, 9, 2733-2745.	1.9	24
47	Design and Synthesis of Thermal Contracting Polymer with Unique Eight-Membered Carbocycle Unit. Macromolecules, 2018, 51, 1377-1385.	2.2	26
48	Biomimetic synthesis of coordination network materials: Recent advances in MOFs and MPNs. Applied Materials Today, 2018, 10, 93-105.	2.3	62
49	A photocatalyst immobilized on fibrous and porous monolithic cellulose for heterogeneous catalysis of controlled radical polymerization. Polymer Chemistry, 2018, 9, 1666-1673.	1.9	54
50	A Process for Well-Defined Polymer Synthesis through Textile Dyeing Inspired Catalyst Immobilization. ACS Sustainable Chemistry and Engineering, 2018, 6, 15245-15253.	3.2	52
51	Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. Journal of the American Chemical Society, 2018, 140, 13392-13406.	6.6	110
52	PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chemical Communications, 2018, 54, 6591-6606.	2.2	171
53	Elements of RAFT Navigation. ACS Symposium Series, 2018, , 77-103.	0.5	21
54	Copolymers with Controlled Molecular Weight Distributions and Compositional Gradients through Flow Polymerization. Macromolecules, 2018, 51, 4553-4563.	2.2	104

#	Article	IF	CITATIONS
55	Living Additive Manufacturing. ACS Central Science, 2017, 3, 95-96.	5.3	10
56	Photoinduced Oxygen Reduction for Dark Polymerization. Macromolecules, 2017, 50, 1832-1846.	2.2	72
57	Oxygen tolerant photopolymerization for ultralow volumes. Polymer Chemistry, 2017, 8, 5012-5022.	1.9	187
58	Application of oxygen tolerant PET-RAFT to polymerization-induced self-assembly. Polymer Chemistry, 2017, 8, 2841-2851.	1.9	142
59	Photocontrolled Living Polymerization Systems with Reversible Deactivations through Electron and Energy Transfer. Macromolecular Rapid Communications, 2017, 38, 1700143.	2.0	133
60	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, 8376-8383.	7.2	165
61	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, 8496-8503.	1.6	36
62	Controlling Molecular Weight Distributions through Photoinduced Flow Polymerization. Macromolecules, 2017, 50, 8438-8448.	2.2	132
63	2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly in the Presence of Air. ACS Macro Letters, 2017, 6, 1237-1244.	2.3	101
64	Frontispiece: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
65	Frontispiz: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, .	1.6	0
66	Chlorophyll a crude extract: efficient photo-degradable photocatalyst for PET-RAFT polymerization. Chemical Communications, 2017, 53, 12560-12563.	2.2	58
67	RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers. Polymer Chemistry, 2017, 8, 4637-4643.	1.9	69
68	Macromol. Rapid Commun. 11/2016. Macromolecular Rapid Communications, 2016, 37, 940-940.	2.0	0
69	Polymerization of a Photocleavable Monomer Using Visible Light. Macromolecular Rapid Communications, 2016, 37, 905-910.	2.0	50
70	Aqueous RAFT Photopolymerization with Oxygen Tolerance. Macromolecules, 2016, 49, 9345-9357.	2.2	121
71	Photoacid-mediated ring opening polymerization driven by visible light. Chemical Communications, 2016, 52, 7126-7129.	2.2	182
72	A Photoinitiation System for Conventional and Controlled Radical Polymerization at Visible and NIR Wavelengths. Macromolecules, 2016, 49, 3274-3285.	2.2	116

#	Article	IF	CITATIONS
73	Photocatalysis in organic and polymer synthesis. Chemical Society Reviews, 2016, 45, 6165-6212.	18.7	587
74	A logic gate for external regulation of photopolymerization. Polymer Chemistry, 2016, 7, 6437-6449.	1.9	50
75	Controlled Polymerization: Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	5.6	5
76	Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization. Advanced Science, 2016, 3, 1500394.	5.6	249
77	Oxygen Tolerance in Living Radical Polymerization: Investigation of Mechanism and Implementation in Continuous Flow Polymerization. Macromolecules, 2016, 49, 6779-6789.	2.2	188
78	A Polymerization-Induced Self-Assembly Approach to Nanoparticles Loaded with Singlet Oxygen Generators. Macromolecules, 2016, 49, 7277-7285.	2.2	135
79	Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst. Journal of Visualized Experiments, 2016, , .	0.2	2
80	Lightâ€Regulated Polymerization under Nearâ€Infrared/Farâ€Red Irradiation Catalyzed by Bacteriochlorophyllâ€ <i>a</i> . Angewandte Chemie, 2016, 128, 1048-1052.	1.6	56
81	Lightâ€Regulated Polymerization under Nearâ€Infrared/Farâ€Red Irradiation Catalyzed by Bacteriochlorophyllâ€ <i>a</i> . Angewandte Chemie - International Edition, 2016, 55, 1036-1040.	7.2	294
82	Star Polymers. Chemical Reviews, 2016, 116, 6743-6836.	23.0	653
83	One-Pot Synthesis of Block Copolymers by Orthogonal Ring-Opening Polymerization and PET-RAFT Polymerization at Ambient Temperature. ACS Macro Letters, 2016, 5, 444-449.	2.3	74
84	Selective Photoactivation: From a Single Unit Monomer Insertion Reaction to Controlled Polymer Architectures. Journal of the American Chemical Society, 2016, 138, 3094-3106.	6.6	250
85	Visible Light Photocatalytic Thiol–Ene Reaction: An Elegant Approach for Fast Polymer Postfunctionalization and Step-Growth Polymerization. Macromolecules, 2015, 48, 520-529.	2.2	147
86	Exploiting Metalloporphyrins for Selective Living Radical Polymerization Tunable over Visible Wavelengths. Journal of the American Chemical Society, 2015, 137, 9174-9185.	6.6	427
87	Catalyst-Free Visible Light-Induced RAFT Photopolymerization. ACS Symposium Series, 2015, , 247-267.	0.5	107
88	Visible-Light-Regulated Controlled/Living Radical Polymerization in Miniemulsion. ACS Macro Letters, 2015, 4, 1139-1143.	2.3	80
89	Organic Electron Donor–Acceptor Photoredox Catalysts: Enhanced Catalytic Efficiency toward Controlled Radical Polymerization. ACS Macro Letters, 2015, 4, 926-932.	2.3	79
90	Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters, 2015, 4, 984-990.	2.3	235

#	Article	IF	CITATIONS
91	Utilizing the electron transfer mechanism of chlorophyll a under light for controlled radical polymerization. Chemical Science, 2015, 6, 1341-1349.	3.7	218
92	Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polymer Chemistry, 2015, 6, 5615-5624.	1.9	368
93	Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste. Journal of Materials Science, 2014, 49, 2761-2772.	1.7	59
94	A Robust and Versatile Photoinduced Living Polymerization of Conjugated and Unconjugated Monomers and Its Oxygen Tolerance. Journal of the American Chemical Society, 2014, 136, 5508-5519.	6.6	801
95	Photoredox catalyst-mediated atom transfer radical addition for polymer functionalization under visible light. Polymer Chemistry, 2014, 5, 3321-3325.	1.9	41
96	Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chemical Science, 2014, 5, 3568.	3.7	196
97	Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization of Vinyl Acetate and <i>N</i> -Vinylpyrrolidinone: Kinetic and Oxygen Tolerance Study. Macromolecules, 2014, 47, 4930-4942.	2.2	216
98	Combining Enzymatic Monomer Transformation with Photoinduced Electron Transfer â^' Reversible Addition–Fragmentation Chain Transfer for the Synthesis of Complex Multiblock Copolymers. ACS Macro Letters, 2014, 3, 633-638.	2.3	66
99	Oxygen Tolerance Study of Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization Mediated by Ru(bpy) ₃ Cl ₂ . Macromolecules, 2014, 47, 4217-4229.	2.2	270
100	Novel drug carriers: from grafted polymers to cross-linked vesicles. Chemical Communications, 2013, 49, 33-35.	2.2	43
101	Synthesis of Novel Core Crossâ€Linked Starâ€Based Polyrotaxane Endâ€Capped via "CuAAC―Click Chemistr Macromolecular Rapid Communications, 2012, 33, 2109-2114.	У _{2.0}	12
102	Facile Access to Polymeric Vesicular Nanostructures: Remarkable ï‰-End group Effects in Cholesterol and Pyrene Functional (Co)Polymers. Macromolecules, 2011, 44, 299-312.	2.2	59
103	Protein Release from Biodegradable PolyHPMA–Lysozyme Conjugates Resulting in Bioactivity Enhancement. Chemistry - an Asian Journal, 2011, 6, 1398-1404.	1.7	13
104	Biodegradable PEG Hydrogels Cross-linkedUsing Biotin-Avidin Interactions. Australian Journal of Chemistry, 2010, 63, 1413.	0.5	10
105	Synthesis, Characterization, and Bioactivity of Mid-Functional PolyHPMAâ^'Lysozyme Bioconjugates. Macromolecules, 2010, 43, 3721-3727.	2.2	56
106	Combining Thioâ^'Bromo "Click―Chemistry and RAFT Polymerization: A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules, 2010, 43, 20-24.	2.2	153
107	Synthesis of dendritic carbohydrate endâ€functional polymers via RAFT: Versatile multiâ€functional precursors for bioconjugations. Journal of Polymer Science Part A, 2009, 47, 4302-4313.	2.5	72
108	RAFT controlled synthesis of six-armed biodegradable star polymeric architectures via a †core-first' methodology. Polymer, 2009, 50, 4455-4463.	1.8	48

#	Article	IF	CITATIONS
109	Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB ₂ Macromonomers Prepared by RAFT Polymerization. Macromolecules, 2009, 42, 6893-6901.	2.2	41
110	Synthesis and bioactivity of poly(HPMA)–lysozyme conjugates: the use of novel thiazolidine-2-thione coupling chemistry. Organic and Biomolecular Chemistry, 2009, 7, 3481.	1.5	88
111	Bio-reversible polyPEGylation. Chemical Communications, 2009, , 6560.	2.2	36
112	Direct Observation of the RAFT Polymerization Process by Chromatography. Macromolecules, 2007, 40, 5618-5624.	2.2	21
113	Kinetic analysis of the cross reaction between dithioester and alkoxyamine by a Monte Carlo simulation. Journal of Polymer Science Part A, 2007, 45, 374-387.	2.5	15
114	Thermal Decomposition of Dithioesters and Its Effect on RAFT Polymerization. Macromolecules, 2006, 39, 3753-3759.	2.2	107
115	Aminolysis of Polymers with Thiocarbonylthio Termini Prepared by RAFT Polymerization:  The Difference between Polystyrene and Polymethacrylates. Macromolecules, 2006, 39, 8616-8624.	2.2	166
116	Synthesis and Characterization of ABC-type Star and Linear Block Copolymers of Styrene, Isoprene, and 1,3-Cyclohexadiene. Macromolecules, 2006, 39, 6898-6904.	2.2	36
117	Synthesis of SAN-containing block copolymers using RAFT polymerization. Journal of Polymer Science Part A, 2006, 44, 2260-2269.	2.5	38
118	Thermal Decomposition of Cumyl Dithiobenzoate. Macromolecules, 2005, 38, 10332-10335.	2.2	71