
Anindya S Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/671202/publications.pdf Version: 2024-02-01

ANINDVA S CHOCH

#	Article	IF	CITATIONS
1	Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends in Microbiology, 2008, 16, 309-317.	7.7	142
2	Common Î ² -lactamases inhibit bacterial biofilm formation. Molecular Microbiology, 2005, 58, 1012-1024.	2.5	105
3	Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1193-1204.	3.3	75
4	Helical Disposition of Proteins and Lipopolysaccharide in the Outer Membrane of Escherichia coli. Journal of Bacteriology, 2005, 187, 1913-1922.	2.2	70
5	Contribution of Membrane-Binding and Enzymatic Domains of Penicillin Binding Protein 5 to Maintenance of Uniform Cellular Morphology of Escherichia coli. Journal of Bacteriology, 2002, 184, 3630-3639.	2.2	54
6	Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Molecular Microbiology, 2004, 52, 1045-1054.	2.5	52
7	Deletion of penicillin-binding protein 5 (PBP5) sensitises Escherichia coli cells to β-lactam agents. International Journal of Antimicrobial Agents, 2010, 35, 244-249.	2.5	39
8	Deletion of penicillin-binding protein 1b impairs biofilm formation and motility in Escherichia coli. Research in Microbiology, 2012, 163, 254-257.	2.1	39
9	PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli. Microbiology (United Kingdom), 2011, 157, 2702-2707.	1.8	36
10	Sequences near the Active Site in Chimeric Penicillin Binding Proteins 5 and 6 Affect Uniform Morphology of Escherichia coli. Journal of Bacteriology, 2003, 185, 2178-2186.	2.2	35
11	Involvement of an Efflux System in High-Level Fluoroquinolone Resistance ofShigella dysenteriae. Biochemical and Biophysical Research Communications, 1998, 242, 54-56.	2.1	31
12	Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. Microbiology (United Kingdom), 2019, 165, 891-904.	1.8	31
13	A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of dd-carboxypeptidase and beta-lactamase. Microbiology (United Kingdom), 2015, 161, 1081-1091.	1.8	30
14	A weak dd-carboxypeptidase activity explains the inability of PBP 6 to substitute for PBP 5 in maintaining normal cell shape inEscherichia coli. FEMS Microbiology Letters, 2010, 303, 76-83.	1.8	27
15	Two <scp>dd</scp> -Carboxypeptidases from Mycobacterium smegmatis Affect Cell Surface Properties through Regulation of Peptidoglycan Cross-Linking and Glycopeptidolipids. Journal of Bacteriology, 2018, 200, .	2.2	24
16	Sub-Inhibitory Cefsulodin Sensitization of E. coli to β-lactams Is Mediated by PBP1b Inhibition. PLoS ONE, 2012, 7, e48598.	2.5	17
17	Moderate deacylation efficiency of DacD explains its ability to partially restore beta-lactam resistance in <i>Escherichia coli</i> PBP5 mutant. FEMS Microbiology Letters, 2012, 337, 73-80.	1.8	13
18	A single amino acid substitution in the Ω-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance. Microbiology (United Kingdom), 2015, 161, 895-902.	1.8	13

Anindya S Ghosh

#	Article	IF	CITATIONS
19	Loss of O-antigen increases cell shape abnormalities in penicillin-binding protein mutants ofEscherichia coli. FEMS Microbiology Letters, 2006, 263, 252-257.	1.8	12
20	E152A substitution drastically affects NDM-5 activity. FEMS Microbiology Letters, 2017, 364, fnx008.	1.8	12
21	Involvement of AmpG in mediating a dynamic relationship between serine beta-lactamase induction and biofilm-forming ability of Escherichia coli. FEMS Microbiology Letters, 2018, 365, .	1.8	12
22	Alterations in High Molecular Mass Penicillin-Binding Protein 1 Associated with Beta-Lactam Resistance inShigella dysenteriae. Biochemical and Biophysical Research Communications, 1998, 248, 669-672.	2.1	10
23	Templating effect of 1,5-disubstituted 1,2,3-triazole-linked disaccharides on size, shape and antibacterial activity of silver nanoparticles. RSC Advances, 2014, 4, 63036-63038.	3.6	10
24	Differences in active-site microarchitecture explain the dissimilar behaviors of PBP5 and 6 in Escherichia coli. Journal of Molecular Graphics and Modelling, 2011, 29, 650-656.	2.4	9
25	A Tyrosine Residue Along with a Glutamic Acid of the Omega-Like Loop Governs the Beta-Lactamase Activity of MSMEC_4455 in Mycobacterium smegmatis. Protein Journal, 2017, 36, 220-227.	1.6	9
26	Glutamate residues at positions 162 and 164 influence the beta-lactamase activity of SHV-14 obtained from Klebsiella pneumoniae. FEMS Microbiology Letters, 2018, 365, .	1.8	9
27	Escherichia coliO8-antigen enhances biofilm formation under agitated conditions. FEMS Microbiology Letters, 2015, 362, fnv112.	1.8	8
28	Identification of a multidrug efflux pump in <i>Mycobacterium smegmatis</i> . FEMS Microbiology Letters, 2016, 363, fnw128.	1.8	8
29	Effect of single-dose carbapenem exposure on transcriptional expression of blaNDM-1 and mexA in Pseudomonas aeruginosa. Journal of Global Antimicrobial Resistance, 2016, 7, 72-77.	2.2	7
30	Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 â,,¦-Like Loop Introduces a Moderate Cephalosporinase Activity. Protein Journal, 2018, 37, 122-131.	1.6	7
31	The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. F1000Research, 2013, 2, 286.	1.6	7
32	Involvement of O8-antigen in altering β-lactam antibiotic susceptibilities in <i>Escherichia coli</i> . FEMS Microbiology Letters, 2008, 282, 59-64.	1.8	6
33	PBP Deletion Mutants of Escherichia coli Exhibit Irregular Distribution of MreB at the Deformed Zones. Current Microbiology, 2014, 68, 174-179.	2.2	6
34	Potential Mode of Protection of Silkworm Pupae from Environmental Stress by Harboring the Bacterial Biofilm on the Surfaces of Silk Cocoons. Current Microbiology, 2015, 70, 228-234.	2.2	6
35	Multiple Resistance Mechanisms Acting in Unison in an Escherichia coli Clinical Isolate. Current Microbiology, 2013, 67, 748-753.	2.2	5
36	Role of Escherichia coli endopeptidases and dd-carboxypeptidases in infection and regulation of innate immune response. Microbes and Infection, 2019, 21, 464-474.	1.9	5

ANINDYA S GHOSH

#	Article	IF	CITATIONS
37	Glutamic acid at position 152 and serine at position 191 are key residues required for the metallo-β-lactamase activity of NDM-7. International Journal of Antimicrobial Agents, 2020, 55, 105824.	2.5	5
38	Rapid Fluorescent-Based Detection of New Delhi Metallo-β-Lactamases by Photo-Cross-Linking Using Conjugates of Azidonaphthalimide and Zinc(II)-Chelating Motifs. ACS Omega, 2019, 4, 10891-10898.	3.5	4
39	PBP4 and PBP5 are involved in regulating exopolysaccharide synthesis during Escherichia coli biofilm formation. Microbiology (United Kingdom), 2021, 167, .	1.8	4
40	MSMEG_2432 of Mycobacterium smegmatis mc2155 is a dual function enzyme that exhibits DD-carboxypeptidase and β-lactamase activities. Microbiology (United Kingdom), 2020, 166, 546-553.	1.8	3
41	Comparative insight into the roles of the non active-site residues E169 and N173 in imparting the beta-lactamase activity of CTX-M-15. FEMS Microbiology Letters, 2022, 369, .	1.8	3
42	PBP Isolation and DD-Carboxypeptidase Assay. Methods in Molecular Biology, 2019, 1946, 207-225.	0.9	2
43	Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli. Antibiotics, 2022, 11, 67.	3.7	2
44	Deciphering the role of residues in the loops nearing the active site of OXA-58 in imparting beta-lactamase activity. Microbiology (United Kingdom), 2022, 168, .	1.8	1