Fei Tao

List of Publications by Citations

Source: https://exaly.com/author-pdf/6711772/fei-tao-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56 13,195 112 234 h-index g-index citations papers 16,686 254 7.54 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
234	Digital twin-driven product design, manufacturing and service with big data. <i>International Journal of Advanced Manufacturing Technology</i> , 2018 , 94, 3563-3576	3.2	963
233	Digital Twin in Industry: State-of-the-Art. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 2405-241	5 11.9	658
232	Data-driven smart manufacturing. <i>Journal of Manufacturing Systems</i> , 2018 , 48, 157-169	9.1	60 7
231	Cloud manufacturing: a new manufacturing paradigm. Enterprise Information Systems, 2014, 8, 167-187	3.5	583
230	Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. <i>IEEE Access</i> , 2018 , 6, 3585-3593	3.5	541
229	Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. <i>IEEE Access</i> , 2017 , 5, 20418-20427	3.5	488
228	CCIoT-CMfg: Cloud Computing and Internet of Things-Based Cloud Manufacturing Service System. <i>IEEE Transactions on Industrial Informatics</i> , 2014 , 10, 1435-1442	11.9	475
227	IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing. <i>IEEE Transactions on Industrial Informatics</i> , 2014 , 10, 1547-1557	11.9	434
226	Cloud manufacturing: a computing and service-oriented manufacturing model. <i>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</i> , 2011 , 225, 1969-1976	2.4	379
225	Big Data in product lifecycle management. <i>International Journal of Advanced Manufacturing Technology</i> , 2015 , 81, 667-684	3.2	315
224	Digital twin-driven product design framework. <i>International Journal of Production Research</i> , 2019 , 57, 3935-3953	7.8	302
223	FC-PACO-RM: A Parallel Method for Service Composition Optimal-Selection in Cloud Manufacturing System. <i>IEEE Transactions on Industrial Informatics</i> , 2013 , 9, 2023-2033	11.9	288
222	Digital Twins and Cyber P hysical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. <i>Engineering</i> , 2019 , 5, 653-661	9.7	267
221	Digital twin driven prognostics and health management for complex equipment. <i>CIRP Annals - Manufacturing Technology</i> , 2018 , 67, 169-172	4.9	265
220	Enabling technologies and tools for digital twin. <i>Journal of Manufacturing Systems</i> , 2021 , 58, 3-21	9.1	224
219	Resource Service Composition and Its Optimal-Selection Based on Particle Swarm Optimization in Manufacturing Grid System. <i>IEEE Transactions on Industrial Informatics</i> , 2008 , 4, 315-327	11.9	214
218	Advanced manufacturing systems: socialization characteristics and trends. <i>Journal of Intelligent Manufacturing</i> , 2017 , 28, 1079-1094	6.7	203

(2016-2015)

217	Cloud manufacturing: from concept to practice. Enterprise Information Systems, 2015, 9, 186-209	3.5	187
216	Industrial IoT in 5G environment towards smart manufacturing. <i>Journal of Industrial Information</i> Integration, 2018 , 10, 10-19	7	186
215	Cloud manufacturing: key characteristics and applications. <i>International Journal of Computer Integrated Manufacturing</i> , 2017 , 30, 501-515	4.3	178
214	Digital Twin Service towards Smart Manufacturing. <i>Procedia CIRP</i> , 2018 , 72, 237-242	1.8	166
213	New IT Driven Service-Oriented Smart Manufacturing: Framework and Characteristics. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2019 , 49, 81-91	7.3	160
212	SDMSim: A manufacturing service supplydemand matching simulator under cloud environment. <i>Robotics and Computer-Integrated Manufacturing</i> , 2017 , 45, 34-46	9.2	150
211	Correlation-aware resource service composition and optimal-selection in manufacturing grid. <i>European Journal of Operational Research</i> , 2010 , 201, 129-143	5.6	141
210	Manufacturing Service Management in Cloud Manufacturing: Overview and Future Research Directions. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2015 , 137,	3.3	136
209	Make more digital twins. <i>Nature</i> , 2019 , 573, 490-491	50.4	129
208	CLPS-GA: A case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. <i>Applied Soft Computing Journal</i> , 2014 , 19, 264-279	7.5	122
207	IIHub: An Industrial Internet-of-Things Hub Toward Smart Manufacturing Based on Cyber-Physical System. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 2271-2280	11.9	117
206	. IEEE Transactions on Industrial Informatics, 2014 , 10, 1252-1261	11.9	108
205	A study of optimal allocation of computing resources in cloud manufacturing systems. <i>International Journal of Advanced Manufacturing Technology</i> , 2012 , 63, 671-690	3.2	107
204	Data and knowledge mining with big data towards smart production. <i>Journal of Industrial Information Integration</i> , 2018 , 9, 1-13	7	105
203	A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system. <i>Enterprise Information Systems</i> , 2014 , 8, 445-463	3.5	105
202	Customized production based on distributed 3D printing services in cloud manufacturing. <i>International Journal of Advanced Manufacturing Technology</i> , 2016 , 84, 71-83	3.2	104
201	Study on manufacturing grid & its resource service optimal-selection system. <i>International Journal of Advanced Manufacturing Technology</i> , 2008 , 37, 1022-1041	3.2	98
200	Internet of Things in product life-cycle energy management. <i>Journal of Industrial Information</i> Integration, 2016 , 1, 26-39	7	94

199	Toward Dynamic Resources Management for IoT-Based Manufacturing 2018, 56, 52-59		92
198	Research on manufacturing grid resource service optimal-selection and composition framework. <i>Enterprise Information Systems</i> , 2012 , 6, 237-264	3.5	91
197	Modeling of manufacturing service supplydemand matching hypernetwork in service-oriented manufacturing systems. <i>Robotics and Computer-Integrated Manufacturing</i> , 2017 , 45, 59-72	9.2	89
196	A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. <i>IEEE Access</i> , 2019 , 7, 86769-86777	3.5	87
195	Modelling of combinable relationship-based composition service network and the theoretical proof of its scale-free characteristics. <i>Enterprise Information Systems</i> , 2012 , 6, 373-404	3.5	79
194	Quantized Feedback Control of Fuzzy Markov Jump Systems. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3375-3384	10.2	78
193	A modeling and description method of multidimensional information for manufacturing capability in cloud manufacturing system. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 69, 961-975	3.2	76
192	Energy-aware resource service scheduling based on utility evaluation in cloud manufacturing system. <i>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</i> , 2013 , 227, 1901-1915	2.4	75
191	A Ranking Chaos Algorithm for dual scheduling of cloud service and computing resource in private cloud. <i>Computers in Industry</i> , 2013 , 64, 448-463	11.6	69
190	Digital Twin Enhanced Dynamic Job-Shop Scheduling. <i>Journal of Manufacturing Systems</i> , 2021 , 58, 146-	1561	69
189	Phase-Transited Lysozyme as a Universal Route to Bioactive Hydroxyapatite Crystalline Film. <i>Advanced Functional Materials</i> , 2018 , 28, 1704476	15.6	68
188	Cyber-physical integration for moving digital factories forward towards smart manufacturing: a		
	survey. International Journal of Advanced Manufacturing Technology, 2018 , 97, 1209-1221	3.2	67
187	Application and modeling of resource service trust-QoS evaluation in manufacturing grid system. International Journal of Production Research, 2009, 47, 1521-1550	3.27.8	66
187 186	Application and modeling of resource service trust-QoS evaluation in manufacturing grid system.		
	Application and modeling of resource service trust-QoS evaluation in manufacturing grid system. International Journal of Production Research, 2009, 47, 1521-1550 A methodology towards virtualisation-based high performance simulation platform supporting	7.8	66
186	Application and modeling of resource service trust-QoS evaluation in manufacturing grid system. <i>International Journal of Production Research</i> , 2009 , 47, 1521-1550 A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products. <i>Enterprise Information Systems</i> , 2012 , 6, 267-290 A review of the application of grid technology in manufacturing. <i>International Journal of Production</i>	7.8 3.5	66
186	Application and modeling of resource service trust-QoS evaluation in manufacturing grid system. <i>International Journal of Production Research</i> , 2009 , 47, 1521-1550 A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products. <i>Enterprise Information Systems</i> , 2012 , 6, 267-290 A review of the application of grid technology in manufacturing. <i>International Journal of Production Research</i> , 2011 , 49, 4119-4155 Resource service optimal-selection based on intuitionistic fuzzy set and non-functionality QoS in	7.8 3.5 7.8	666565

181	Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. <i>Nature Communications</i> , 2018 , 9, 5443	17.4	60	
180	Study on manufacturing grid resource service QoS modeling and evaluation. <i>International Journal of Advanced Manufacturing Technology</i> , 2009 , 41, 1034-1042	3.2	59	
179	Correlation-aware web services composition and QoS computation model in virtual enterprise. International Journal of Advanced Manufacturing Technology, 2010, 51, 817-827	3.2	56	
178	Smart Manufacturing and Intelligent Manufacturing: A Comparative Review. <i>Engineering</i> , 2021 , 7, 738-75	9 .7	56	
177	Advanced manufacturing systems: supplydemand matching of manufacturing resource based on complex networks and Internet of Things. <i>Enterprise Information Systems</i> , 2018 , 12, 780-797	3.5	48	
176	An Extensible Model for Multitask-Oriented Service Composition and Scheduling in Cloud Manufacturing. <i>Journal of Computing and Information Science in Engineering</i> , 2016 , 16, 041009	2.4	46	
175	An Ontology-Based Resource Reconfiguration Method for Manufacturing Cyber-Physical Systems. IEEE/ASME Transactions on Mechatronics, 2018 , 23, 2537-2546	5.5	45	
174	Blockchain-Based Trust Mechanism for IoT-Based Smart Manufacturing System. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 1386-1394	4.5	44	
173	A hybrid group leader algorithm for green material selection with energy consideration in product design. <i>CIRP Annals - Manufacturing Technology</i> , 2016 , 65, 9-12	4.9	44	
172	Green partner selection in virtual enterprise based on Pareto genetic algorithms. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 67, 2109-2125	3.2	42	
171	A quantum multi-agent evolutionary algorithm for selection of partners in a virtual enterprise. <i>CIRP Annals - Manufacturing Technology</i> , 2010 , 59, 485-488	4.9	40	
170	A clustering network-based approach to service composition in cloud manufacturing. <i>International Journal of Computer Integrated Manufacturing</i> , 2017 , 30, 1331-1342	4.3	39	
169	Utility modelling, equilibrium, and coordination of resource service transaction in service-oriented manufacturing system. <i>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</i> , 2012 , 226, 1099-1117	2.4	39	
168	Concept, Principle and Application of Dynamic Configuration for Intelligent Algorithms. <i>IEEE Systems Journal</i> , 2014 , 8, 28-42	4.3	38	
167	Tuning Crystallization Pathways through the Mesoscale Assembly of Biomacromolecular Nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13440-13444	16.4	38	
166	An approach to manufacturing grid resource service scheduling based on trust-QoS. <i>International Journal of Computer Integrated Manufacturing</i> , 2009 , 22, 100-111	4.3	38	
165	Complex networks in advanced manufacturing systems. <i>Journal of Manufacturing Systems</i> , 2017 , 43, 409	9421	37	
164	Digital twin enhanced human-machine interaction in product lifecycle. <i>Procedia CIRP</i> , 2019 , 83, 789-793	1.8	35	

163	Consensus aware manufacturing service collaboration optimization under blockchain based Industrial Internet platform. <i>Computers and Industrial Engineering</i> , 2019 , 135, 1025-1035	6.4	35
162	A trust evaluation model towards cloud manufacturing. <i>International Journal of Advanced Manufacturing Technology</i> , 2016 , 84, 133-146	3.2	35
161	GA-BHTR: an improved genetic algorithm for partner selection in virtual manufacturing. <i>International Journal of Production Research</i> , 2012 , 50, 2079-2100	7.8	34
160	Study on resource service match and search in manufacturing grid system. <i>International Journal of Advanced Manufacturing Technology</i> , 2009 , 43, 379-399	3.2	34
159	An Internet of things and cloud-based approach for energy consumption evaluation and analysis for a product. <i>International Journal of Computer Integrated Manufacturing</i> , 2018 , 31, 337-348	4.3	33
158	Protein-Bound Freestanding 2D Metal Film for Stealth Information Transmission. <i>Advanced Materials</i> , 2019 , 31, e1803377	24	32
157	Cloud manufacturing paradigm with ubiquitous robotic system for product customization. <i>Robotics and Computer-Integrated Manufacturing</i> , 2019 , 60, 12-22	9.2	31
156	Partial/Parallel Disassembly Sequence Planning for Complex Products. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2018 , 140,	3.3	31
155	Robotic disassembly re-planning using a two-pointer detection strategy and a super-fast bees algorithm. <i>Robotics and Computer-Integrated Manufacturing</i> , 2019 , 59, 130-142	9.2	30
154	Research on measurement method of resource service composition flexibility in service-oriented manufacturing system. <i>International Journal of Computer Integrated Manufacturing</i> , 2012 , 25, 113-135	4.3	30
153	New Paradigm of Data-Driven Smart Customisation through Digital Twin. <i>Journal of Manufacturing Systems</i> , 2021 , 58, 270-280	9.1	29
152	A generic energy prediction model of machine tools using deep learning algorithms. <i>Applied Energy</i> , 2020 , 275, 115402	10.7	28
151	Digital Twin and Services 2019 , 203-217		27
150	. IEEE Transactions on Industrial Informatics, 2019 , 15, 3712-3722	11.9	26
149	A Cooperative Co-Evolutionary Algorithm for Large-Scale Process Planning With Energy Consideration. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2017 , 139,	3.3	25
148	. IEEE Transactions on Industrial Electronics, 2018 , 65, 6044-6054	8.9	25
147	Modeling of Cyber-Physical Systems and Digital Twin Based on Edge Computing, Fog Computing and Cloud Computing Towards Smart Manufacturing 2018 ,		25
146	Optimal guidance law design for impact with terminal angle of attack constraint. <i>Optik</i> , 2014 , 125, 243	-25.5	24

145	Digital twin modeling method for CNC machine tool 2018 ,		23
144	Manufacturing grid resource and resource service digital description. <i>International Journal of Advanced Manufacturing Technology</i> , 2009 , 44, 1024-1035	3.2	22
143	Hypernetwork-based manufacturing service scheduling for distributed and collaborative manufacturing operations towards smart manufacturing. <i>Journal of Intelligent Manufacturing</i> , 2020 , 31, 1707-1720	6.7	22
142	Equipment energy consumption management in digital twin shop-floor: A framework and potential applications 2018 ,		21
141	Study of failure detection and recovery in manufacturing grid resource service scheduling. <i>International Journal of Production Research</i> , 2010 , 48, 69-94	7.8	20
140	Digital twin and blockchain enhanced smart manufacturing service collaboration and management. Journal of Manufacturing Systems, 2020,	9.1	20
139	A field programmable gate array implemented fibre channel switch for big data communication towards smart manufacturing. <i>Robotics and Computer-Integrated Manufacturing</i> , 2019 , 57, 166-181	9.2	20
138	An improved artificial bee colony for facility location allocation problem of end-of-life vehicles recovery network. <i>Journal of Cleaner Production</i> , 2018 , 205, 134-144	10.3	20
137	Data Driven Smart Customization. <i>Procedia CIRP</i> , 2019 , 81, 564-569	1.8	19
136	Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine. <i>Journal of Intelligent Manufacturing</i> , 2019 , 30, 2681-2699	6.7	19
135	Energy adaptive immune genetic algorithm for collaborative design task scheduling in Cloud Manufacturing system 2011 ,		18
134	Logistics-aware manufacturing service collaboration optimisation towards industrial internet platform. <i>International Journal of Production Research</i> , 2019 , 57, 4007-4026	7.8	17
133	Digital Twin Driven Green Material Optimal-Selection towards Sustainable Manufacturing. <i>Procedia CIRP</i> , 2019 , 81, 1290-1294	1.8	16
132	Study on Multi-View Model for Cloud Manufacturing. Advanced Materials Research, 2011, 201-203, 685	-68 <i>8</i> 5	16
131	A multi-agent architecture for scheduling in platform-based smart manufacturing systems. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2019 , 20, 1465-1492	2.2	16
130	2011,		16
129	Multi-centric management and optimized allocation of manufacturing resource and capability in cloud manufacturing system. <i>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</i> , 2017 , 231, 2159-2172	2.4	15
128	Data-driven smart production line and its common factors. <i>International Journal of Advanced Manufacturing Technology</i> , 2019 , 103, 1211-1223	3.2	15

127	Five-Dimension Digital Twin Modeling and Its Key Technologies 2019 , 63-81		14
126	Cloud Manufacturing. Advanced Materials Research, 2011, 201-203, 672-676	0.5	14
125	Resource service sharing in cloud manufacturing based on the GaleBhapley algorithm: advantages and challenge. <i>International Journal of Computer Integrated Manufacturing</i> , 2015 , 1-13	4.3	13
124	Smart Product-Service Systems Solution Design via Hybrid Crowd Sensing Approach. <i>IEEE Access</i> , 2019 , 7, 128463-128473	3.5	13
123	A Systematic Function Recommendation Process for Data-Driven Product and Service Design. Journal of Mechanical Design, Transactions of the ASME, 2017 , 139,	3	13
122	Ca-mediated electroformation of cell-sized lipid vesicles. <i>Scientific Reports</i> , 2015 , 5, 9839	4.9	13
121	Biologically Inspired Design of Context-Aware Smart Products. <i>Engineering</i> , 2019 , 5, 637-645	9.7	12
120	Dynamic Supply-Demand Matching for Manufacturing Resource Services in Service-Oriented Manufacturing Systems: A Hypernetwork-Based Solution Framework 2015 ,		12
119	QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization. <i>Simulation</i> , 2014 , 90, 182-204	1.2	12
118	Does migration cost influence cooperation among success-driven individuals?. <i>Chaos, Solitons and Fractals</i> , 2012 , 45, 1301-1308	9.3	12
117	On-line optimization design of sliding mode guidance law with multiple constraints. <i>Applied Mathematical Modelling</i> , 2013 , 37, 7568-7587	4.5	12
116	Research on the Measurement Method of Flexibility of Resource Service Composition in Cloud Manufacturing. <i>Advanced Materials Research</i> , 2010 , 139-141, 1451-1454	0.5	12
115	CoSMSOL: Complex system modeling, simulation and optimization language. <i>International Journal of Modeling, Simulation, and Scientific Computing</i> , 2017 , 08, 1741002	0.8	11
114	Background and Concept of Digital Twin 2019 , 3-28		11
113	A new approach for data processing in supply chain network based on FPGA. <i>International Journal of Advanced Manufacturing Technology</i> , 2016 , 84, 249-260	3.2	11
112	Resources publication and discovery in manufacturing grid. <i>Journal of Zhejiang University: Science A</i> , 2006 , 7, 1676-1682	2.1	11
111	Parallel design of intelligent optimization algorithm based on FPGA. <i>International Journal of Advanced Manufacturing Technology</i> , 2018 , 94, 3399-3412	3.2	10
110	Artificial intelligence in product lifecycle management. <i>International Journal of Advanced Manufacturing Technology</i> , 2021 , 114, 771-796	3.2	10

(2021-2018)

109	Connectivity-Based Accessibility for Public Bicycle Sharing Systems. <i>IEEE Transactions on Automation Science and Engineering</i> , 2018 , 15, 1521-1532	4.9	10
108	Configurable Intelligent Optimization Algorithm. Springer Series in Advanced Manufacturing, 2015,	0.9	8
107	A novel search algorithm based on waterweeds reproduction principle for job shop scheduling problem. <i>International Journal of Advanced Manufacturing Technology</i> , 2016 , 84, 405-424	3.2	8
106	Design of Optimal Attack-Angle for RLV Reentry Based on Quantum Particle Swarm Optimization. <i>Advances in Mechanical Engineering</i> , 2014 , 6, 352983	1.2	8
105	Future Manufacturing Industry with Cloud Manufacturing 2014 , 127-152		8
104	A Framework for Correlation Relationship Mining of Cloud Service in Cloud Manufacturing System. <i>Advanced Materials Research</i> , 2011 , 314-316, 2259-2262	0.5	8
103	Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network. <i>Journal of Computing and Information Science in Engineering</i> , 2020 , 20,	2.4	8
102	Digital Twin and Big Data 2019 , 183-202		8
101	Manufacturing Services Scheduling With Supply Demand Dual Dynamic Uncertainties Toward Industrial Internet Platforms. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 2997-3010	11.9	8
100	Surrogate Model via Artificial Intelligence Method for Accelerating Screening Materials and Performance Prediction. <i>Advanced Functional Materials</i> , 2021 , 31, 2006245	15.6	8
99	An Iterative Budget Algorithm for Dynamic Virtual Machine Consolidation Under Cloud Computing Environment. <i>IEEE Transactions on Services Computing</i> , 2018 , 1-1	4.8	7
98	Auto-Sorting System Toward Smart Factory Based on Deep Learning for Image Segmentation. <i>IEEE Sensors Journal</i> , 2018 , 1-1	4	7
97	Complex networks based manufacturing service and task management in cloud environment 2015,		7
96	Analysis of cloud service transaction in cloud manufacturing 2012,		7
95	Adaptive Optimization Method in Digital Twin Conveyor Systems via Range-Inspection Control. <i>IEEE Transactions on Automation Science and Engineering</i> , 2020 , 1-9	4.9	7
94	Scalable Hypernetwork-Based Manufacturing Services Supply Demand Matching Toward Industrial Internet Platforms. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2020 , 50, 5000-5014	7.3	7
93	Automated Overheated Region Object Detection of Photovoltaic Module With Thermography Image. <i>IEEE Journal of Photovoltaics</i> , 2021 , 11, 535-544	3.7	7
92	Manufacturing service supply-demand optimization with dual diversities for industrial internet platforms. <i>Computers and Industrial Engineering</i> , 2021 , 156, 107237	6.4	7

91	Rotated neighbor learning-based auto-configured evolutionary algorithm. <i>Science China Information Sciences</i> , 2016 , 59, 1	3.4	6
90	The optimal allocation model of computing resources in cloud manufacturing system 2011,		6
89	Research on the Knowledge-Based Multi-Dimensional Information Model of Manufacturing Capability in CMfg. <i>Advanced Materials Research</i> , 2012 , 472-475, 2592-2595	0.5	6
88	Manufacturing services collaboration: connotation, framework, key technologies, and research issues. <i>International Journal of Advanced Manufacturing Technology</i> , 2020 , 110, 2573-2589	3.2	6
87	Digital twin enhanced fault prediction for the autoclave with insufficient data. <i>Journal of Manufacturing Systems</i> , 2021 , 60, 350-359	9.1	6
86	Industrial Dataspace for smart manufacturing: connotation, key technologies, and framework. International Journal of Production Research,1-16	7.8	6
85	Artificial intelligence enhanced interaction in digital twin shop-floor. <i>Procedia CIRP</i> , 2021 , 100, 858-863	1.8	6
84	A discovery method of service-correlation for service composition in virtual enterprise. <i>European Journal of Industrial Engineering</i> , 2014 , 8, 579	1.1	5
83	Composable correlation mining of cloud service in cloud manufacturing 2011 ,		5
82	A multi-scale modeling method for digital twin shop-floor. <i>Journal of Manufacturing Systems</i> , 2022 , 62, 417-428	9.1	5
81	Architecture of Hybrid Cloud for Manufacturing Enterprise. <i>Communications in Computer and Information Science</i> , 2012 , 365-372	0.3	5
80	Controlling the Structure and Function of Protein Thin Films through Amyloid-like Aggregation. <i>Accounts of Chemical Research</i> , 2021 , 54, 3016-3027	24.3	5
79	Applications of Digital Twin 2019 , 29-62		4
78	Task allocation in manufacturing: A review. <i>Journal of Industrial Information Integration</i> , 2019 , 15, 207-2	1 , 8	4
77	A hybrid particle swarm optimization and simulated annealing algorithm for job-shop scheduling 2014 ,		4
76	Research and Applications of Cloud Manufacturing in China 2014 , 89-126		4
75	Social selection of game organizers promotes cooperation in spatial public goods games. <i>Europhysics Letters</i> , 2013 , 102, 50006	1.6	4
74	Modelling of manufacturing resource in manufacturing grid based on XML 2006,		4

(2007-2016)

73	Image Threshold Processing Based on Simulated Annealing and OTSU Method. <i>Lecture Notes in Electrical Engineering</i> , 2016 , 223-231	0.2	4
72	Developing Biopolymer Mesocrystals by Crystallization of Secondary Structures. <i>Langmuir</i> , 2019 , 35, 183-193	4	4
71	Online Detection of Action Start via Soft Computing for Smart City. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 524-533	11.9	4
70	New IT driven rapid manufacturing for emergency response. <i>Journal of Manufacturing Systems</i> , 2021 , 60, 928-935	9.1	4
69	Digital Twin and Cloud, Fog, Edge Computing 2019 , 171-181		3
68	Tuning Crystallization Pathways through the Mesoscale Assembly of Biomacromolecular Nanocrystals. <i>Angewandte Chemie</i> , 2017 , 129, 13625-13629	3.6	3
67	Lifecycle Management of Knowledge in a Cloud Manufacturing System 2013,		3
66	The Connotation of Manufacturing Grid & its key technology 2006,		3
65	Digital twin data: methods and key technologies. <i>Digital Twin</i> ,1, 2		3
64	Tuning Chain Relaxation from an Amorphous Biopolymer Film to Crystals by Removing Air/Water Interface Limitations. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20192-20200	16.4	3
63	Digital twin for human-machine interaction with convolutional neural network. <i>International Journal of Computer Integrated Manufacturing</i> , 2021 , 34, 888-897	4.3	3
62	A physical model and data-driven hybrid prediction method towards quality assurance for composite components. <i>CIRP Annals - Manufacturing Technology</i> , 2021 , 70, 115-118	4.9	3
61	Energy-Aware Material Selection for Product With Multicomponent Under Cloud Environment. <i>Journal of Computing and Information Science in Engineering</i> , 2017 , 17,	2.4	2
60	A Hybrid RCO for Dual Scheduling of Cloud Service and Computing Resource in Private Cloud. <i>Springer Series in Advanced Manufacturing</i> , 2015 , 257-287	0.9	2
59	An evolutionary algorithm recommendation method with a case study in flow shop scheduling. <i>International Journal of Advanced Manufacturing Technology</i> , 2020 , 109, 781-796	3.2	2
58	Smart Production Line: Common Factors and Data-Driven Implementation Method 2017,		2
57	Development and Implementation of Cloud Manufacturing: An Evolutionary Perspective 2013,		2
56	Resource Modeling of Logistic Grid System Based on XML 2007 ,		2

		Fr	EI TAO
55	An improved electromagnetism-like mechanism algorithm for energy-aware many-objective flexible job shop scheduling. <i>International Journal of Advanced Manufacturing Technology</i> , 2022 , 119, 4265	3.2	2
54	Dynamic Mode Transfer Scheduling for Degrading Standby System Considering Load-Sharing Characteristic. <i>IEEE Systems Journal</i> , 2020 , 1-12	4.3	2
53	Blockchain applications in PLM towards smart manufacturing. <i>International Journal of Advanced Manufacturing Technology</i> ,1	3.2	2
52	Digital twin driven conceptual design 2020, 33-66		2
51	Digital twin driven smart product design framework 2020 , 3-32		2
50	Modeling and Solution for Virtual Channel Scheduling for Downlink Business. <i>Communications in Computer and Information Science</i> , 2014 , 35-47	0.3	2
49	Opportunistic maintenance for multi-unit series systems based on gated recurrent units prediction model. <i>CIRP Annals - Manufacturing Technology</i> , 2020 , 69, 25-28	4.9	2
48	A manufacturing services collaboration framework toward industrial internet platforms 2018,		2
47	Overview of IoT-Enabled Manufacturing System 2017 , 21-41		1
46	Cloud Computing-Based Manufacturing Resources Configuration Method 2017 , 85-107		1
45	Digital Twin, Cyber P hysical System, and Internet of Things 2019 , 243-256		1
44	A variable frequency sampling method for sudden small-volume data and conventional large-volume data. <i>Procedia CIRP</i> , 2019 , 81, 1319-1324	1.8	1
43	Framework of evaluation system for energy-saving and emission-reduction based on BOM 2012,		1
42	Multiple Faults Detection with SoC Dynamic Reconfiguration System Based on FPGA. <i>Advanced Materials Research</i> , 2013 , 694-697, 2642-2645	0.5	1
41	A framework for MGrid resource service optimal-selection and composition 2009,		1
40	Concept and Framework of Reconfigurable Intelligent Optimization Algorithm. <i>Advanced Materials Research</i> , 2012 , 479-481, 1875-1879	0.5	1
39	Study on Semantic-Aware Manufacturing Grid Architecture 2008,		1
38	Digital twin-driven complexity management in intelligent manufacturing. <i>Digital Twin</i> ,1, 9		1

37	Digital twin driven design evaluation 2020 , 139-164		1
36	Classifier Selection for Locomotion Mode Recognition Using Wearable Capacitive Sensing Systems. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 763-774	0.4	1
35	Modeling and High Performance Computing Analysis of Three-Dimensional Electromagnetic Environment. <i>Communications in Computer and Information Science</i> , 2012 , 25-33	0.3	1
34	Research on Evolution and Simulation of Transaction Process in Cloud Manufacturing. <i>Lecture Notes in Electrical Engineering</i> , 2016 , 553-562	0.2	1
33	A Business Entity Correlation Discovery Method between Cloud Services in Cloud Manufacturing System. <i>Proceedings in Information and Communications Technology</i> , 2012 , 301-307		1
32	A Modeling Framework for Resource Service Sharing in a Cloud Manufacturing System. <i>IFIP Advances in Information and Communication Technology</i> , 2015 , 412-419	0.5	1
31	Suppression of Sunscreen Leakage in Water by Amyloid-like Protein Aggregates. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS Applied</i>	9.5	1
30	Digital twin data: methods and key technologies. <i>Digital Twin</i> ,1, 2		1
29	Long/short-term preference based dynamic pricing and manufacturing service collaboration optimization. <i>IEEE Transactions on Industrial Informatics</i> , 2022 , 1-1	11.9	1
28	Digital Twin Shop-Floor 2019 , 85-110		Ο
27	Cyber P hysical Fusion in Digital Twin Shop-Floor 2019 , 125-139		0
26	Graph-based operational robustness analysis of industrial Internet of things platform for manufacturing service collaboration. <i>International Journal of Production Research</i> ,1-28	7.8	Ο
25	Digital twin-driven CNC spindle performance assessment. <i>International Journal of Advanced Manufacturing Technology</i> , 2022 , 119, 1821	3.2	0
24	Failures detection and cascading analysis of manufacturing services collaboration toward industrial internet platforms. <i>Journal of Manufacturing Systems</i> , 2020 , 57, 169-181	9.1	O
23	Tuning Chain Relaxation from an Amorphous Biopolymer Film to Crystals by Removing Air/Water Interface Limitations. <i>Angewandte Chemie</i> , 2020 , 132, 20367-20375	3.6	0
22	Inaugural Editorial - Digital Twin. <i>Digital Twin</i> ,1, 1		O
21	Optimizing Support Vector Machine with Genetic Algorithm for Capacitive Sensing-Based Locomotion Mode Recognition. <i>Advances in Intelligent Systems and Computing</i> , 2016 , 1035-1047	0.4	
20	Real-Time and Multisource Manufacturing Information Sensing System 2017 , 43-65		

11.9

19	IoT-Enabled Smart Assembly Station 2017 , 67-84	
18	Real-Time Key Production Performances Analysis Method 2017 , 129-145	
17	Equipment Energy Consumption Management in Digital Twin Shop-Floor 2019 , 111-124	
16	Digital Twin-Driven Prognostics and Health Management 2019 , 141-167	
15	Dynamic Configuration of Intelligent Optimization Algorithms. <i>Springer Series in Advanced Manufacturing</i> , 2015 , 83-105	0.9
14	Recent Advances of Intelligent Optimization Algorithm in Manufacturing. <i>Springer Series in Advanced Manufacturing</i> , 2015 , 35-80	0.9
13	Digital twin driven lean design for computerized numerical control machine tools 2020 , 265-287	
12	Call for Papers Issue 3/2019. Business and Information Systems Engineering, 2017, 59, 483-484	3.8
11	An Evolving Web Service Interaction Network Model. Applied Mechanics and Materials, 2014, 610, 559-	567.3
10	The Implementation and Validation of Multidimensional Kalman Filter in SoC System. <i>Advanced Materials Research</i> , 2013 , 694-697, 2656-2659	0.5
9	Digital twin based computerized numerical control machine tool virtual prototype design 2020 , 237-26	53
8	Improvement and Hybridization of Intelligent Optimization Algorithm. <i>Springer Series in Advanced Manufacturing</i> , 2015 , 107-126	0.9
7	Computing Resource Allocation with PEADGA. Springer Series in Advanced Manufacturing, 2015, 291-33	310.9
6	GA-BHTR for Partner Selection Problem. Springer Series in Advanced Manufacturing, 2015, 157-189	0.9
5	The Research of High-Definition Video Processing System Based on SOC. <i>Lecture Notes in Electrical Engineering</i> , 2016 , 153-161	0.2
4	Research on Detecting Abnormal Energy Consumption in Energy Management System. <i>Communications in Computer and Information Science</i> , 2016 , 233-244	0.3
3	From service to digital twin service 2022 , 1-31	

Collaboration Tiredness Aware Manufacturing Service Collaboration Incentive and Optimization. *IEEE Transactions on Industrial Informatics*, **2022**, 1-1

Data-driven real-time control method for process equipment in flow shop towards product quality improvement. *Procedia CIRP*, **2022**, 107, 908-913

1.8