Chris Upton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6711686/publications.pdf

Version: 2024-02-01

94269 58464 7,199 93 37 h-index citations papers

82 g-index

94 94 docs citations all docs

94 6442 times ranked citing authors

#	Article	IF	CITATIONS
1	The Genome Sequence of the SARS-Associated Coronavirus. Science, 2003, 300, 1399-1404.	6.0	1,842
2	African swine fever virus replication and genomics. Virus Research, 2013, 173, 3-14.	1.1	460
3	Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology, 2005, 340, 46-63.	1.1	342
4	Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science, 1992, 258, 1369-1372.	6.0	319
5	A new family of lipolytic enzymes?. Trends in Biochemical Sciences, 1995, 20, 178-179.	3.7	286
6	Poxvirus Orthologous Clusters: toward Defining the Minimum Essential Poxvirus Genome. Journal of Virology, 2003, 77, 7590-7600.	1.5	254
7	Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. Journal of General Virology, 2008, 89, 397-408.	1.3	244
8	Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genomics, 2006, 7, 150.	1.2	212
9	Genomic Analysis of Highly Virulent Georgia 2007/1 Isolate of African Swine Fever Virus. Emerging Infectious Diseases, 2011, 17, 599-605.	2.0	186
10	Poxviruses: past, present and future. Virus Research, 2006, 117, 105-118.	1.1	164
11	SERP1, a Serine Proteinase Inhibitor Encoded by Myxoma Virus, Is a Secreted Glycoprotein That Interferes with Inflammation. Virology, 1993, 195, 348-363.	1.1	152
12	Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes. Virology Journal, 2007, 4, 11.	1.4	152
13	A Full-Genome Phylogenetic Analysis of Varicella-Zoster Virus Reveals a Novel Origin of Replication-Based Genotyping Scheme and Evidence of Recombination between Major Circulating Clades. Journal of Virology, 2006, 80, 9850-9860.	1.5	142
14	Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology, 2010, 400, 128-136.	1.1	134
15	Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in Bioinformatics, 2021, 22, 642-663.	3. 2	110
16	JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics, 2004, 20, 279-281.	1.8	102
17	Related strains of African swine fever virus with different virulence: genome comparison and analysis. Journal of General Virology, 2015, 96, 408-419.	1.3	98
18	A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Letters, 1995, 377, 475-480.	1.3	97

#	Article	IF	CITATIONS
19	The Myxoma Virus-soluble Interferon- \hat{l}^3 Receptor Homolog, M-T7, Inhibits Interferon- \hat{l}^3 in a Species-specific Manner. Journal of Biological Chemistry, 1995, 270, 3031-3038.	1.6	91
20	The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology, 2003, 317, 165-186.	1.1	86
21	Cowpox Virus Inhibits the Transporter Associated with Antigen Processing to Evade T Cell Recognition. Cell Host and Microbe, 2009, 6, 433-445.	5.1	68
22	Vaccinia Virus–Encoded Ribonucleotide Reductase Subunits Are Differentially Required for Replication and Pathogenesis. PLoS Pathogens, 2010, 6, e1000984.	2.1	66
23	Base-By-Base: single nucleotide-level analysis of whole viral genome alignments. BMC Bioinformatics, 2004, 5, 96.	1.2	64
24	Paramecium bursaria Chlorella Virus 1 Proteome Reveals Novel Architectural and Regulatory Features of a Giant Virus. Journal of Virology, 2012, 86, 8821-8834.	1.5	64
25	Genomic Analysis of the Vaccinia Virus Strain Variants Found in Dryvax Vaccine. Journal of Virology, 2011, 85, 13049-13060.	1.5	63
26	Poxvirus Orthologous Clusters (POCs). Bioinformatics, 2002, 18, 1544-1545.	1.8	62
27	Myxoma virus M11L ORF encodes a protein for which cell surface localization is critical in manifestation of viral virulence. Virology, 1992, 191, 112-124.	1.1	56
28	Poxvirus Bioinformatics Resource Center: a comprehensive Poxviridae informational and analytical resource. Nucleic Acids Research, 2004, 33, D311-D316.	6.5	53
29	Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genomics, 2017, 18, 298.	1.2	51
30	Viral genome organizer: a system for analyzing complete viral genomes. Virus Research, 2000, 70, 55-64.	1.1	50
31	Role of phages in the pathogenesis of Burkholderia, or †Where are the toxin genes in Burkholderia phages?'. Current Opinion in Microbiology, 2007, 10, 410-417.	2.3	50
32	Comparative analysis of the complete genome sequences of Kenyan African swine fever virus isolates within p72 genotypes IX and X. Virus Genes, 2015, 50, 303-309.	0.7	49
33	Organization of two genes encoding cytotoxic T lymphocyte-specific serine proteases CCPI and CCPII. Biochemistry, 1988, 27, 6941-6946.	1.2	42
34	Shope Fibroma Virus RING Finger Protein N1R Binds DNA and Inhibits Apoptosis. Virology, 1998, 249, 42-51.	1.1	42
35	Complete coding sequences of the rabbitpox virus genome. Journal of General Virology, 2005, 86, 2969-2977.	1.3	41
36	GraphDNA: a Java program for graphical display of DNA composition analyses. BMC Bioinformatics, 2007, 8, 21.	1.2	41

#	Article	IF	CITATIONS
37	Genomic differences of Vaccinia virus clones from Dryvax smallpox vaccine: The Dryvax-like ACAM2000 and the mouse neurovirulent Clone-3. Vaccine, 2007, 25, 8807-8832.	1.7	40
38	Deletion of the growth factor gene related to EGF and TGF $\hat{l}\pm$ reduces virulence of malignant rabbit fibroma virus. Virology, 1992, 186, 175-191.	1.1	39
39	Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV light-induced apoptosis. Journal of General Virology, 2000, 81, 1087-1097.	1.3	37
40	Characterization of indels in poxvirus genomes. Virus Genes, 2011, 42, 171-177.	0.7	36
41	Base-By-Base version 2: single nucleotide-level analysis of whole viral genome alignments. Microbial Informatics and Experimentation, $2011,1,2.$	7.6	36
42	The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Scientific Reports, 2021, 11, 13081.	1.6	34
43	Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages. BMC Genomics, 2017, 18, 346.	1.2	32
44	The Genome of Yoka Poxvirus. Journal of Virology, 2011, 85, 10230-10238.	1.5	30
45	Analysis of host response modifier ORFs of ectromelia virus, the causative agent of mousepox. Virus Research, 2000, 66, 155-173.	1.1	26
46	Evidence for a novel gene associated with human influenza A viruses. Virology Journal, 2009, 6, 198.	1.4	26
47	Transcriptional regulation of two cytotoxk T lymphocyte-specific serine protease gene. Nucleic Acids Research, 1989, 17, 5765-5779.	6.5	24
48	Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication. Virology Journal, 2006, 3, 88.	1.4	24
49	Base-By-Base Version 3: New Comparative Tools for Large Virus Genomes. Viruses, 2018, 10, 637.	1.5	24
50	A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily. Virus Research, 1997, 48, 11-18.	1,1	23
51	Single primer pair designs that facilitate simultaneous detection and differentiation of peach mosaic virus and cherry mottle leaf virus. Journal of Virological Methods, 1999, 83, 103-111.	1.0	23
52	Prediction of Steps in the Evolution of Variola Virus Host Range. PLoS ONE, 2014, 9, e91520.	1.1	21
53	Predicted function of the vaccinia virus G5R protein. Bioinformatics, 2006, 22, 2846-2850.	1.8	19
54	A new method for indexing genomes using on-disk suffix trees. , 2008, , .		18

#	Article	IF	CITATIONS
55	Genomic characterization of a novel poxvirus from a flying fox: evidence for a new genus?. Journal of General Virology, 2016, 97, 2363-2375.	1.3	18
56	A novel poxvirus gene and its human homolog are similar to an E. coli Lysophospholipase. Virus Research, 1997, 52, 157-167.	1.1	17
57	Subversion of Cytokine Networks by Viruses. International Reviews of Immunology, 1998, 17, 121-155.	1.5	17
58	gpt-gus Fusion Gene for Selection and Marker in Recombinant Poxviruses. BioTechniques, 1997, 22, 276-278.	0.8	16
59	Novel Poxvirus Infection in an Immune Suppressed Patient. Clinical Infectious Diseases, 2015, 61, 1543-1548.	2.9	16
60	Characterization of Eptesipoxvirus, a novel poxvirus from a microchiropteran bat. Virus Genes, 2017, 53, 856-867.	0.7	16
61	Screening predicted coding regions in poxvirus genomes. , 2000, 20, 159-164.		15
62	Two novel poxviruses with unusual genome rearrangements: NY_014 and Murmansk. Virus Genes, 2017, 53, 883-897.	0.7	15
63	The genomes of three North American orthopoxviruses. Virus Genes, 2017, 53, 21-34.	0.7	15
64	Using purine skews to predict genes in AT-rich poxviruses. BMC Genomics, 2005, 6, 22.	1.2	14
65	Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses, 2017, 9, 253.	1.5	14
66	Vaccinia Virus G8R Protein: A Structural Ortholog of Proliferating Cell Nuclear Antigen (PCNA). PLoS ONE, 2009, 4, e5479.	1.1	13
67	An ectromelia virus profilin homolog interacts with cellular tropomyosin and viral A-type inclusion protein. Virology Journal, 2007, 4, 76.	1.4	12
68	Incongruencies in Vaccinia Virus Phylogenetic Trees. Computation, 2014, 2, 182-198.	1.0	12
69	New bioinformatics tools for viral genome analyses at Viral Bioinformatics – Canada. Pharmacogenomics, 2005, 6, 271-280.	0.6	11
70	Sequence Searcher: A Java tool to perform regular expression and fuzzy searches of multiple DNA and protein sequences. BMC Research Notes, 2009, 2, 14.	0.6	11
71	Genome sequence and comparative virulence of raccoonpox virus: the first North American poxvirus sequence. Journal of General Virology, 2015, 96, 2806-2821.	1.3	11
72	Recent Hits Acquired by BLAST (ReHAB): a tool to identify new hits in sequence similarity searches. BMC Bioinformatics, 2005, 6, 23.	1.2	10

#	Article	IF	CITATIONS
73	Genome segment RNA-1 of a flat apple isolate of Cherry rasp leaf virus: nucleotide sequence analysis and RT-PCR detection. Archives of Virology, 2005, 150, 1469-1476.	0.9	9
74	Bioinformatics for Analysis of Poxvirus Genomes. Methods in Molecular Biology, 2019, 2023, 29-62.	0.4	9
75	Isolation and Characterization of Akhmeta Virus from Wild-Caught Rodents (<i>Apodemus</i> spp.) in Georgia. Journal of Virology, 2019, 93, .	1.5	9
76	Complete genomic characterisation of two novel poxviruses (WKPV and EKPV) from western and eastern grey kangaroos. Virus Research, 2017, 242, 106-121.	1.1	8
77	Bioinformatics for Analysis of Poxvirus Genomes. Methods in Molecular Biology, 2012, 890, 233-258.	0.4	8
78	Host-derived pathogenicity islands in poxviruses. Virology Journal, 2005, 2, 30.	1.4	7
79	Java GUI for InterProScan (JIPS): A tool to help process multiple InterProScans and perform ortholog analysis. BMC Bioinformatics, 2006, 7, 462.	1.2	7
80	Complete genome sequence of a novel sea otterpox virus. Virus Genes, 2018, 54, 756-767.	0.7	5
81	Utilization of the second polyadenylation signal at the 3′ end of the chicken carbonic anhydrase II gene. Nucleic Acids Research, 1990, 18, 1049-1049.	6.5	3
82	Poxvirus Bioinformatics., 2004, 269, 347-370.		3
83	Suffix tree searcher: exploration of common substrings in large DNA sequence sets. BMC Research Notes, 2014, 7, 466.	0.6	3
84	Shortest Path Approaches for the Longest Common Subsequence of a Set of Strings. , 2007, , .		2
85	JaPaFi: A Novel Program for the Identification of Highly Conserved DNA Sequences. Viruses, 2010, 2, 1867-1885.	1.5	2
86	Expression of a non-coding RNA in ectromelia virus is required for normal plaque formation. Virus Genes, 2014, 48, 38-47.	0.7	2
87	Virus Databases â^†., 2017, , .		2
88	Prediction of a novel RNA binding domain in crocodilepox Zimbabwe Gene 157. Microbial Informatics and Experimentation, 2011, 1, 12.	7.6	1
89	Bioinformatic Approaches for Comparative Analysis of Viruses. Methods in Molecular Biology, 2018, 1704, 401-417.	0.4	1
90	Organizing and Updating Whole Genome BLAST Searches with ReHAB. Methods in Molecular Biology, 2007, 395, 187-194.	0.4	1

CHRIS UPTON

#	Article	IF	CITATIONS
91	Comparative Genomics of Viruses Using Bioinformatics Tools. , 2007, , 49-72.		O
92	KISSa: a strategy to build multiple sequence alignments from pairwise comparisons of very closely related sequences. BMC Research Notes, 2009, 2, 91.	0.6	0
93	It's a small world after allâ€"viral genomics and the global dominance of viruses. Current Opinion in Virology, 2011, 1, 280-281.	2.6	O