
Galina K Elyashevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6711331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamics of crystallization of macromolecules of various degrees of coiling. Journal of Macromolecular Science - Physics, 1977, 13, 255-289.	0.4	45
2	New photosensitive polymer composites based on oriented porous polyethylene filled with azobenzeneâ€containing LC mixture: reversible photomodulation of dichroism and birefringence. Liquid Crystals, 2008, 35, 533-539.	0.9	38
3	Porous structure, permeability, and mechanical properties of polyolefin microporous films. Physics of the Solid State, 2012, 54, 1907-1916.	0.2	33

Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline $\hat{a} \in \hat{}$) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 33 10 T

5	Synthesis and characterization of thin polypyrrole layers on polyethylene microporous films. European Polymer Journal, 1999, 35, 613-620.	2.6	30
6	Electrical resistance and diffusion permeability of microporous polyethylene membranes modified with polypyrrole and polyaniline in solutions of electrolytes. Journal of Membrane Science, 2002, 196, 279-287.	4.1	27
7	Composite membranes with conducting polymer microtubules as new electroactive and transport systems. Polymers for Advanced Technologies, 2002, 13, 725-736.	1.6	27
8	Thermochemical and deformational stability of microporous polyethylene films with polyaniline layer. Thermochimica Acta, 2001, 374, 23-30.	1.2	26
9	Structure development in oriented polyethylene films and microporous membranes as monitored by sound propagation. Journal of Applied Polymer Science, 2001, 80, 214-222.	1.3	26
10	Effect of polymerization conditions of pyrrole on formation, structure and properties of high gas separation thin polypyrrole films. Thin Solid Films, 2002, 406, 54-63.	0.8	26
11	Thermodynamics and kinetics of orientational crystallization of flexible-chain polymers. Advances in Polymer Science, 1982, , 205-245.	0.4	24
12	Micro- and nanofiltration membranes on the base of porous polyethylene films. Desalination, 2005, 184, 273-279.	4.0	23
13	Swelling-contraction of sodium polyacrylate hydrogels in media with various pH values. Polymer Science - Series A, 2009, 51, 550-553.	0.4	23
14	Photopatternable fluorescent polymer composites based on stretched porous polyethylene and photopolymerizable liquid crystal mixture. Journal of Materials Chemistry, 2008, 18, 691.	6.7	21
15	Photochromic LC–polymer composites containing azobenzene chromophores with thermally stable Z-isomers. Journal of Materials Chemistry C, 2014, 2, 4482-4489.	2.7	20
16	Deformation behavior and mechanical properties of hard elastic and porous films of polyethylene. Macromolecular Symposia, 1999, 147, 91-101.	0.4	19
17	Polymer matrix of polyethylene porous films functionalized by electrical discharge plasma. European Polymer Journal, 2008, 44, 2702-2707.	2.6	19
18	Electroactive hydrogels based on poly(acrylic acid) and polypyrrole. Polymer Science - Series A, 2011, 53, 67-74.	0.4	19

#	Article	IF	CITATIONS
19	Investigation of gas diffusion through films of fullerene-containing poly(phenylene oxide). Technical Physics Letters, 1999, 25, 555-557.	0.2	18
20	The effect of a polypyrrole coating on the thermal stability of microporous polyethylene membranes. European Polymer Journal, 2003, 39, 647-654.	2.6	18
21	Porosity of microporous polyethylene membranes modified with polypyrrole and their diffusion permeability to low-molecular weight substances. Chemical Engineering Journal, 2000, 79, 211-217.	6.6	17
22	Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films. Polymer Degradation and Stability, 2006, 91, 2786-2792.	2.7	17
23	Polymorphic transformations in poly(vinylidene fluoride) films during orientation. Polymer Science - Series A, 2006, 48, 272-277.	0.4	16
24	Combined polyethylene-polyaniline membranes. Journal of Applied Polymer Science, 1997, 64, 2665-2666.	1.3	15
25	Photochromic composites based on porous stretched polyethylene filled by nematic liquid crystal mixtures. Polymers for Advanced Technologies, 2010, 21, 100-112.	1.6	13
26	Quantum dot–polymer composites based on nanoporous polypropylene films with different draw ratios. European Polymer Journal, 2016, 82, 93-101.	2.6	13
27	Formation and analysis of a polyimide layer in composite membranes. Journal of Applied Polymer Science, 2000, 75, 1026-1032.	1.3	12
28	New composite systems on the base of polyethylene porous films covered by polypyrrole and polyacrylic acid. Journal of Applied Polymer Science, 2005, 97, 1410-1417.	1.3	12
29	Polyethylene-based composites containing high concentration of quantum dots. Colloid and Polymer Science, 2015, 293, 1545-1551.	1.0	11
30	Mechanical response and network characterization of conductive polyaniline/polyacrylamide gels. Materials Chemistry and Physics, 2017, 187, 88-95.	2.0	11
31	Orientational crystallization and orientational drawing as strengthening methods for polyethylene. Polymer Engineering and Science, 1993, 33, 1341-1351.	1.5	10
32	Gas transport properties and structural order of poly(4,4′-oxydiphenylene piromelliteimide) in composite membranes. Separation and Purification Technology, 1998, 14, 13-18.	3.9	10
33	Structure and Time-Dependent Mechanical Behavior of Highly Oriented Polyethylene. Mechanics of Time-Dependent Materials, 1999, 3, 319-334.	2.3	9
34	Properties of polymer conducting thin layers on the surface of microporous polyethylene films. Synthetic Metals, 2001, 119, 277-278.	2.1	9
35	Orientation of pores in microporous polyethylene films as determined by polarized absorption spectroscopy. Materials Research Innovations, 2001, 4, 301-305.	1.0	9
36	Swelling behavior and pervaporation properties of new composite membrane systems: Porous polyethylene film-poly(acrylic acid) hydrogel. Journal of Applied Polymer Science, 2004, 94, 1461-1465.	1.3	9

#	Article	IF	CITATIONS
37	Correlation between IR spectra and electric conductivity of polyethylene-polypyrrole composites. Polymer Science - Series B, 2006, 48, 331-334.	0.3	9
38	Photoâ€optical properties of polymer composites based on stretched porous polyethylene filled with photoactive cholesteric liquid crystal. Liquid Crystals, 2007, 34, 791-797.	0.9	9
39	Percolation transitions in porous polyethylene and polypropylene films with lamellar structures. Polymer Science - Series A, 2015, 57, 717-722.	0.4	9
40	Topomorphic states and phase transitions connected with the crystallization of polymers. Polymer Engineering and Science, 1980, 20, 206-211.	1.5	8
41	Properties of Conducting Composite Systems Containing Polypyrrole Layers on Porous Polyethylene Films. Russian Journal of Applied Chemistry, 2005, 78, 1993-2001.	0.1	8
42	Electroactive composite systems containing high conductive polymer layers on poly(ethylene) porous films. Polymers for Advanced Technologies, 2006, 17, 700-704.	1.6	8
43	Conducting film-forming composites based on polyaniline-polyimide blends. Polymer Science - Series A, 2009, 51, 311-316.	0.4	8
44	New pH-responsive and electroactive composite systems containing hydrogels and conducting polymers on a porous matrix. Polymer Science - Series A, 2012, 54, 900-908.	0.4	8
45	Changes in the Amorphous Phase of Polyethylene upon High Extension. International Journal of Polymeric Materials and Polymeric Biomaterials, 1993, 22, 191-199.	1.8	7
46	Colored microporous polyethylene films: effect of porous structure on dye adsorption. Materials Research Innovations, 2002, 6, 34-37.	1.0	7
47	Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. Russian Journal of Applied Chemistry, 2011, 84, 2106-2113.	0.1	7
48	Electrochemical activity and structure of new composite systems based on cross-linked polyacrylamide and polyaniline. Russian Journal of Applied Chemistry, 2014, 87, 491-495.	0.1	7
49	Barrier properties and structure of inorganic layers at polyaniline–steel interface. Russian Journal of Applied Chemistry, 2015, 88, 1168-1173.	0.1	7
50	New polyaniline/chitosan composite systems: Synthesis, structure, and functional properties. Russian Journal of Applied Chemistry, 2015, 88, 1788-1792.	0.1	7
51	Topological structure of microporous oriented polypropylene films. Physics of the Solid State, 2015, 57, 1028-1032.	0.2	7
52	Interaction of Polyaniline with Surface of Carbon Steel. International Journal of Polymer Science, 2017, 2017, 1-9.	1.2	7
53	Electromechanical Response and Structure of Chitosan–Polyaniline Composite Systems. Polymer Science - Series A, 2018, 60, 322-331.	0.4	7
54	Orientation Efforts as Regulatory Factor of Structure Formation in Permeable Porous Poly(vinylidene fluoride) Films. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1283-1289.	2.0	7

#	Article	IF	CITATIONS
55	Properties of multi-layer composite membranes on the base of polyethylene porous films. Desalination, 2002, 144, 21-26.	4.0	6
56	Structure and Long-Term Mechanical Properties of Oriented Polyethylene. Physics of the Solid State, 2005, 47, 1020.	0.2	6
57	Structure of composites prepared via polypyrrole synthesis in supercritical CO2 on microporous polyethylene. Polymer Science - Series A, 2006, 48, 827-840.	0.4	6
58	Hydrophilization of porous polyethylene films by cold plasma of different types. Polymer Science - Series B, 2009, 51, 247-255.	0.3	6
59	Disorder-order transition in microporous oriented polyethylene films. Physics of the Solid State, 2012, 54, 1903-1906.	0.2	6
60	Surface texture and percolation effects in microporous oriented films of polyolefins. Physics of the Solid State, 2012, 54, 2312-2318.	0.2	6
61	Regularities of lamellae ordering in the formation of polypropylene membrane porous structure. Physics of the Solid State, 2014, 56, 396-404.	0.2	6
62	Anticorrosion activity of aniline–aniline-2-sulfonic acid copolymers on the steel surface. Russian Journal of Applied Chemistry, 2016, 89, 432-438.	0.1	6
63	Structure and piezoelectric properties of microporous polyvinylidene fluoride films. Physics of the Solid State, 2017, 59, 1041-1046.	0.2	6
64	Changes in the Structure and Mechanical Properties of Hard Elastic and Porous Polypropylene Films upon Annealing and Orientation. Physics of the Solid State, 2018, 60, 2019-2025.	0.2	6
65	Title is missing!. Acta Polymerica, 1990, 41, 147-152.	1.4	5
66	Effect of degree of cross-linking of sodium acrylate hydrogels on their swelling in variously acidic solutions. Russian Journal of Applied Chemistry, 2008, 81, 1818-1820.	0.1	5
67	Ferroelectric liquid crystal composites based on the porous stretched polyethylene films. Liquid Crystals, 2010, 37, 517-525.	0.9	5
68	Structure and electric conductivity of copolymers of aniline and aniline-2-sulfonic acid obtained via chemical oxidative copolymerization. Polymer Science - Series B, 2012, 54, 477-485.	0.3	5
69	Superlattices of lamellae in microporous oriented polyolefine films. Physics of the Solid State, 2013, 55, 443-449.	0.2	5
70	Structure and mechanical properties of porous films based on polyethylenes of different molecular masses. Polymer Science - Series A, 2013, 55, 595-602.	0.4	4
71	Self-organization of lamellae and permeability of microporous oriented polypropylene films. Physics of the Solid State, 2013, 55, 1968-1975.	0.2	4
72	Hybrid hydrogels based on cross-linked polyacrylic acid and polyvinyl alcohol as electrically controlled artificial muscles. Russian Journal of Applied Chemistry, 2016, 89, 1838-1845.	0.1	4

5

#	Article	IF	CITATIONS
73	Through Permeability of Polyvinylidene Fluoride Piezoactive Porous Films. Polymer Science - Series A, 2018, 60, 734-741.	0.4	4
74	Sorption and Mechanical Properties of Chitosan/Graphene Oxide Composite Systems. Russian Journal of Applied Chemistry, 2019, 92, 415-422.	0.1	4
75	Ordering Effects and Percolation in the Structure Formation Process of the Oriented Polyolefin Porous Films. Acta Chimica Slovenica, 2017, 64, 980-987.	0.2	4
76	New composite membranes based on crosslinked poly(acrylic acid) and porous polyethylene films. Polymer Science - Series A, 2006, 48, 738-744.	0.4	3
77	Features of fluorescence of CdSe/ZnS semiconductor quantum rods in multicomponent solutions with pentylcyanobiphenyl. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 941-946.	0.2	3
78	Structure formation, stability, and thermal strain behavior of oriented microporous polypropylene films. Russian Journal of Applied Chemistry, 2014, 87, 1308-1313.	0.1	3
79	Electroconducting Polypyrrole Coatings as an Electrode Contact Material on Porous Poly(vinylidene) Tj ETQq1 1	0.784314 0.4	rgßT /Overlo
80	Piezoelectric properties of the oriented porous poly(vynilidene) fluoride films. AIP Conference Proceedings, 2020, , .	0.3	3
81	Phenomenon of superheating in the melting of oriented samples of flexible-chain polymers. Acta Polymerica, 1983, 34, 390-395.	1.4	2
82	Thermal Transformations of Polyethylene Film and Porous Membrane on Its Basis. Russian Journal of Applied Chemistry, 2003, 76, 1134-1138.	0.1	2
83	Electrophysical Properties and Thermal-Deformation Stability of Composites Containing Polyaniline Layers Deposited on Porous Polyethylene Films. Russian Journal of Applied Chemistry, 2005, 78, 478-483.	0.1	2
84	Polymer Piezoelements Based on Porous Polyvinylidene Fluoride Films and Contact Electrode Polyaniline Layers. Physics of the Solid State, 2020, 62, 566-573.	0.2	2
85	Physicochemical Properties and Morphological Features of Modified Chitosan/Polyaniline Composite Films. Russian Journal of Physical Chemistry A, 2021, 95, 193-198.	0.1	2
86	Optical transmission of porous polyolefin films in immersion media. Journal of Optical Technology (A) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
87	Theoretical analysis of the effect of crystallization temperature on structure formation in flexible-chain polymers. Journal of Macromolecular Science - Physics, 1990, 29, 249-261.	0.4	1
88	Dependence of the dielectric constant on the structure of extruded polyvinylidene fluoride films. Russian Journal of Applied Chemistry, 2006, 79, 642-646.	0.1	1
89	The effect of a porous polyethylene matrix on the structure and mechanical and deformational properties of electroactive composites. Mechanics of Composite Materials, 2006, 42, 577-586.	0.9	1
		_	

90Behavior of sodium polyacrylate hydrogels in copper sulfate solutions. Russian Journal of Applied
Chemistry, 2008, 81, 1648-1651.0.11

#	Article	IF	CITATIONS
91	Molecular mobility of poly(vinylidene fluoride) in the anisotropic state. Polymer Science - Series A, 2008, 50, 265-272.	0.4	1
92	Light scattering by porous oriented polypropylene films. Physics of the Solid State, 2017, 59, 583-587.	0.2	1
93	Piezo-active composite systems based on porous polyvinylidene fluoride films and conducting polymer layers as electrodes. Physics of Complex Systems, 2021, 2, 25-32.	0.2	1
94	Title is missing!. Acta Polymerica, 1991, 42, 245-250.	1.4	0
95	Computer simulation of coherent radiation scattering by highly anisotropic objects. , 1998, 3573, 540.		0
96	Application of the methods of light scattering to determine structural characteristics of highly oriented polymeric films. , 1998, , .		0
97	Optical investigations of polyethylene microporous films during the structure formation process. , 1998, , .		0
98	Electrochemical properties of conducting polyethylene-polyacetylene composites. Russian Journal of Electrochemistry, 2000, 36, 23-29.	0.3	0
99	Composite materials prepared by phase inversion deposition of polyacrylonitrile onto porous polyethylene films. Russian Journal of Applied Chemistry, 2009, 82, 1447-1455.	0.1	0
100	Effect of orientation extension on the structure and physicomechanical properties of porous polyethylene films. Polymer Science - Series A, 2010, 52, 1311-1317.	0.4	0
101	Application of laser radiation for investigation of oriented polypropylene membranes. Proceedings of SPIE, 2016, , .	0.8	0
102	Nano- and micro-scales structure and properties of the liquid-permeable piezoactive polyvinylidene fluoride films. Nanosystems: Physics, Chemistry, Mathematics, 2019, , 303-312.	0.2	0