
Jens Luders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6711186/publications.pdf Version: 2024-02-01

IENS LUDEDS

#	Article	IF	CITATIONS
1	Pathway-specific effects of ADSL deficiency on neurodevelopment. ELife, 2022, 11, .	6.0	7
2	Microtubule Anchoring: Attaching Dynamic Polymers to Cellular Structures. Frontiers in Cell and Developmental Biology, 2022, 10, 867870.	3.7	13
3	Nucleating microtubules in neurons: Challenges and solutions. Developmental Neurobiology, 2021, 81, 273-283.	3.0	18
4	From tip to toe $\hat{a} \in \hat{a}$ dressing centrioles in \hat{I}^{3} TuRC. Journal of Cell Science, 2021, 134, .	2.0	7
5	Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. ELife, 2021, 10, .	6.0	11
6	Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nature Communications, 2021, 12, 6042.	12.8	27
7	Assembly of the asymmetric human γ-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Science Advances, 2020, 6, .	10.3	34
8	Assaying Microtubule Nucleation. Methods in Molecular Biology, 2020, 2101, 163-178.	0.9	1
9	XMAP215 joins microtubule nucleation team. Nature Cell Biology, 2018, 20, 508-510.	10.3	2
10	Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends in Cell Biology, 2018, 28, 176-187.	7.9	67
11	NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule stabilization. Nature Communications, 2018, 9, 2330.	12.8	29
12	MZT1 regulates microtubule nucleation by linking \hat{I}^{3} TuRC assembly to adapter-mediated targeting and activation. Journal of Cell Science, 2017, 130, 406-419.	2.0	64
13	Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nature Communications, 2016, 7, 12187.	12.8	153
14	Imaging and Quantifying the Dynamics of Î ³ -Tubulin at Microtubule Minus Ends in Mitotic Spindles. Methods in Molecular Biology, 2016, 1413, 63-75.	0.9	3
15	Principles of Microtubule Organization: Insight from the Study of Neurons. , 2016, , 79-115.		0
16	CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nature Communications, 2015, 6, 7676.	12.8	96
17	The Augmin Connection in the Geometry of Microtubule Networks. Current Biology, 2015, 25, R294-R299.	3.9	60
18	The dynamics of microtubule minus ends in the human mitotic spindle. Nature Cell Biology, 2014, 16, 770-778.	10.3	75

Jens Luders

#	Article	IF	CITATIONS
19	CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation. Current Biology, 2013, 23, 1360-1366.	3.9	153
20	Cep63 and Cep152 Cooperate to Ensure Centriole Duplication. PLoS ONE, 2013, 8, e69986.	2.5	83
21	The amorphous pericentriolar cloud takes shape. Nature Cell Biology, 2012, 14, 1126-1128.	10.3	34
22	The where, when and how of microtubule nucleation – one ring to rule them all. Journal of Cell Science, 2012, 125, 4445-56.	2.0	143
23	The Oncoprotein BCL11A Binds to Orphan Nuclear Receptor TLX and Potentiates its Transrepressive Function. PLoS ONE, 2012, 7, e37963.	2.5	24
24	SPICE – a previously uncharacterized protein required for centriole duplication and mitotic chromosome congression. Journal of Cell Science, 2010, 123, 3039-3046.	2.0	18
25	The γTuRC Revisited: A Comparative Analysis of Interphase and Mitotic Human γTuRC Redefines the Set of Core Components and Identifies the Novel Subunit GCP8. Molecular Biology of the Cell, 2010, 21, 3963-3972.	2.1	93
26	Plk1-Dependent Recruitment of Î ³ -Tubulin Complexes to Mitotic Centrosomes Involves Multiple PCM Components. PLoS ONE, 2009, 4, e5976.	2.5	194
27	Microtubule-organizing centres: a re-evaluation. Nature Reviews Molecular Cell Biology, 2007, 8, 161-167.	37.0	346
28	GCP-WD is a Î ³ -tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nature Cell Biology, 2006, 8, 137-147.	10.3	285
29	The ubiquitinâ€like protein HUB1 forms SDSâ€resistant complexes with cellular proteins in the absence of ATP. EMBO Reports, 2003, 4, 1169-1174.	4.5	54
30	Distinct Isoforms of the Cofactor BAG-1 Differentially Affect Hsc70 Chaperone Function. Journal of Biological Chemistry, 2000, 275, 14817-14823.	3.4	75
31	The Ubiquitin-related BAC-1 Provides a Link between the Molecular Chaperones Hsc70/Hsp70 and the Proteasome. Journal of Biological Chemistry, 2000, 275, 4613-4617.	3.4	433
32	Peroxisome targeting of porcine 17?-hydroxysteroid dehydrogenase type IV/D-specific multifunctional protein 2 is mediated by its C-terminal tripeptide AKI. Journal of Cellular Biochemistry, 1999, 73, 70-78.	2.6	24
33	Cofactor-Induced Modulation of the Functional Specificity of the Molecular Chaperone Hsc70. Biological Chemistry, 1998, 379, 1217-1226.	2.5	32
34	SAICAr-Dependent and Independent Effects of ADSL Deficiency on Neurodevelopment. SSRN Electronic Journal, 0, , .	0.4	0