Srinivasan Damodaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6710632/publications.pdf

Version: 2024-02-01

79 papers

4,275 citations

38 h-index 64 g-index

79 all docs

79 docs citations

79 times ranked 3143 citing authors

#	Article	IF	CITATIONS
1	Protein Stabilization of Emulsions and Foams. Journal of Food Science, 2005, 70, R54-R66.	1.5	580
2	Bran-induced changes in water structure and gluten conformation in model gluten dough studied by Fourier transform infrared spectroscopy. Food Hydrocolloids, 2013, 31, 146-155.	5.6	199
3	Heat-Induced Conformational Changes in Whey Protein Isolate and Its Relation to Foaming Properties. Journal of Agricultural and Food Chemistry, 1994, 42, 846-855.	2.4	171
4	Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: effect on gelation. Journal of Agricultural and Food Chemistry, 1988, 36, 262-269.	2.4	123
5	Interaction of carbonyls with soy protein: conformational effects. Journal of Agricultural and Food Chemistry, 1981, 29, 1253-1257.	2.4	118
6	Inhibition of Ice Crystal Growth in Ice Cream Mix by Gelatin Hydrolysate. Journal of Agricultural and Food Chemistry, 2007, 55, 10918-10923.	2.4	118
7	Interaction of carbonyls with soy protein: thermodynamic effects. Journal of Agricultural and Food Chemistry, 1981, 29, 1249-1253.	2.4	117
8	Surface Activityâ^'Compressibility Relationship of Proteins at the Airâ^'Water Interface. Langmuir, 1999, 15, 1392-1399.	1.6	109
9	Kinetics of Adsorption of Proteins at the Air-Water Interface From a Binary Mixture. Langmuir, 1994, 10, 472-480.	1.6	99
10	Thermal Unfolding of \hat{l}^2 -Lactoglobulin: \hat{A} Characterization of Initial Unfolding Events Responsible for Heat-Induced Aggregation. Journal of Agricultural and Food Chemistry, 1997, 45, 4303-4308.	2.4	99
11	Structure-Digestibility Relationship of Legume 7S Proteins. Journal of Food Science, 1989, 54, 108-113.	1.5	92
12	Thermal gelation of globular proteins: weight-average molecular weight dependence of gel strength. Journal of Agricultural and Food Chemistry, 1990, 38, 1157-1164.	2.4	85
13	Emulsifying Properties of Acidic Subunits of Soy 11S Globulin. Journal of Agricultural and Food Chemistry, 1999, 47, 4970-4975.	2.4	80
14	Impact of Bran Addition on Water Properties and Gluten Secondary Structure in Wheat Flour Doughs Studied by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Cereal Chemistry, 2013, 90, 377-386.	1.1	80
15	pH-Stability and Thermal Properties of Microbial Transglutaminase-Treated Whey Protein Isolate. Journal of Agricultural and Food Chemistry, 2010, 58, 1946-1953.	2.4	79
16	Thermodynamic Compatibility of Substrate Proteins Affects Their Cross-Linking by Transglutaminase. Journal of Agricultural and Food Chemistry, 1996, 44, 1211-1217.	2.4	74
17	Effect of Transglutaminase-Catalyzed Polymerization of \hat{I}^2 -Casein on Its Emulsifying Properties. Journal of Agricultural and Food Chemistry, 1999, 47, 1514-1519.	2.4	74
18	Selective Precipitation and Removal of Lipids from Cheese Whey Using Chitosan. Journal of Agricultural and Food Chemistry, 1995, 43, 33-37.	2.4	73

#	Article	IF	Citations
19	Sulfhydrylâ^'Disulfide Interchange-Induced Interparticle Protein Polymerization in Whey Protein-Stabilized Emulsions and Its Relation to Emulsion Stability. Journal of Agricultural and Food Chemistry, 1997, 45, 3813-3820.	2.4	69
20	Effect of microbial transglutaminase treatment on thermal stability andÂpH-solubility of heat-shocked whey protein isolate. Food Hydrocolloids, 2013, 30, 12-18.	5.6	69
21	Role of Dispersion Interactions in the Adsorption of Proteins at Oilâ^'Water and Airâ^'Water Interfaces. Langmuir, 1998, 14, 6457-6469.	1.6	68
22	Chemical Modification Strategies for Synthesis of Protein-Based Hydrogel. Journal of Agricultural and Food Chemistry, 1996, 44, 751-758.	2.4	65
23	Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocolloids, 2017, 70, 46-56.	5.6	65
24	Effects of various anions on the rheological and gelling behavior of soy proteins: thermodynamic observations. Journal of Agricultural and Food Chemistry, 1983, 31, 1270-1275.	2.4	60
25	Off-Flavor Precursors in Soy Protein Isolate and Novel Strategies for their Removal. Annual Review of Food Science and Technology, 2013, 4, 327-346.	5.1	60
26	Effects of microbial transglutaminase treatment on physiochemical properties and emulsifying functionality of faba bean protein isolate. LWT - Food Science and Technology, 2019, 99, 396-403.	2.5	55
27	Influence of electrostatic forces on the adsorption of succinylated .betalactoglobulin at the air-water interface. Langmuir, 1991, 7, 2737-2742.	1.6	54
28	Kinetics of protein foam destabilization: evaluation of a method using bovine serum albumin. Journal of Agricultural and Food Chemistry, 1991, 39, 1555-1562.	2.4	52
29	Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel. Journal of Applied Polymer Science, 1996, 62, 1285-1293.	1.3	51
30	In situ measurement of conformational changes in proteins at liquid interfaces by circular dichroism spectroscopy. Analytical and Bioanalytical Chemistry, 2003, 376, 182-188.	1.9	51
31	Kinetics of destabilization of soy protein foams. Journal of Agricultural and Food Chemistry, 1991, 39, 1563-1567.	2.4	49
32	The role of chemical potential in the adsorption of lysozyme at the air-water interface. Langmuir, 1992, 8, 2021-2027.	1.6	49
33	Effect of Phytate on Solubility, Activity and Conformation of Trypsin and Chymotrypsin. Journal of Food Science, 1989, 54, 695-699.	1.5	47
34	Is Surface Pressure a Measure of Interfacial Water Activity? Evidence from Protein Adsorption Behavior at Interfaces. Langmuir, 2000, 16, 9468-9477.	1.6	46
35	Proteose Peptones and Physical Factors Affect Foaming Properties of Whey Protein Isolate. Journal of Food Science, 1994, 59, 554-560.	1.5	45
36	Metal-chelating properties and biodegradability of an ethylenediaminetetraacetic acid dianhydride modified soy protein hydrogel. Journal of Applied Polymer Science, 1997, 64, 891-901.	1.3	45

#	Article	IF	CITATIONS
37	Dynamics of Exchange between αS1-Casein and β-Casein during Adsorption at Airâ^'Water Interface. Journal of Agricultural and Food Chemistry, 1996, 44, 1022-1028.	2.4	43
38	Ice-Structuring Peptides Derived from Bovine Collagen. Journal of Agricultural and Food Chemistry, 2009, 57, 5501-5509.	2.4	43
39	Incompatibility of Mixing of Proteins in Adsorbed Binary Protein Films at the Airâ^'Water Interface. Journal of Agricultural and Food Chemistry, 2001, 49, 3080-3086.	2.4	38
40	Swelling behavior of protein-based superabsorbent hydrogels treated with ethanol. Journal of Applied Polymer Science, 2001, 81, 2190-2196.	1.3	36
41	Optimisation of hydrolysis conditions and fractionation of peptide cryoprotectants from gelatin hydrolysate. Food Chemistry, 2009, 115, 620-630.	4.2	36
42	Synthesis and properties of fish protein-based hydrogel. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1165-1171.	0.8	33
43	In vitro digestibility and IgE reactivity of enzymatically cross-linked heterologous protein polymers. Food Chemistry, 2017, 221, 1151-1157.	4.2	33
44	Role of surface area-to-volume ratio in protein adsorption at the air–water interface. Surface Science, 2008, 602, 307-315.	0.8	32
45	Influence of protein conformation on its adaptability under chaotropic conditions. International Journal of Biological Macromolecules, 1989, 11, 2-8.	3.6	31
46	Calibration of Radiotracer Method to Study Protein Adsorption at Interfaces. Journal of Colloid and Interface Science, 1993, 157, 485-490.	5.0	30
47	Purification and Characterization of Protease Q:Â A Detergent- and Urea-Stable Serine Endopeptidase fromBacilluspumilus. Journal of Agricultural and Food Chemistry, 1998, 46, 3596-3603.	2.4	30
48	Retardation of Ice Crystallization by Short Peptides. Journal of Physical Chemistry A, 2009, 113, 4403-4407.	1.1	30
49	Competitive Binding of Offâ€Flavor Compounds with Soy Protein and βâ€Cyclodextrin in a Ternary System: A Model Study. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 673-679.	0.8	28
50	Chemical phosphorylation improves the moisture resistance of soy flourâ€based wood adhesive. Journal of Applied Polymer Science, 2014, 131, .	1.3	28
51	Zinc-Induced Precipitation of Milk Fat Globule Membranes: A Simple Method for the Preparation of Fat-Free Whey Protein Isolate. Journal of Agricultural and Food Chemistry, 2010, 58, 11052-11057.	2.4	25
52	Dynamics of Competitive Adsorption of αs-Casein and β-Casein at Planar Trioleinâ^'Water Interface: Evidence for Incompatibility of Mixing in the Interfacial Film. Journal of Agricultural and Food Chemistry, 2003, 51, 1658-1665.	2.4	24
53	Removal of off-flavour-causing precursors in soy protein by concurrent treatment with phospholipase A2 and cyclodextrins. Food Chemistry, 2018, 264, 319-325.	4.2	24
54	Conformational characteristics of legume 7S globulins as revealed by circular dichroic., derivative u. v. absorption and fluorescence techniques. International Journal of Peptide and Protein Research, 1990, 35, 25-34.	0.1	23

#	Article	IF	CITATIONS
55	Straightforward Process for Removal of Milk Fat Globule Membranes and Production of Fat-free Whey Protein Concentrate from Cheese Whey. Journal of Agricultural and Food Chemistry, 2011, 59, 10271-10276.	2.4	22
56	Dairy Lecithin from Cheese Whey Fat Globule Membrane: Its Extraction, Composition, Oxidative Stability, and Emulsifying Properties. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 217-224.	0.8	22
57	A two-step enzymatic modification method to reduce immuno-reactivity of milk proteins. Food Chemistry, 2017, 237, 724-732.	4.2	22
58	Surface pressure dependence of phospholipase A2 activity in lipid monolayers is linked to interfacial water activity. Colloids and Surfaces B: Biointerfaces, 2004, 34, 197-204.	2.5	21
59	Is Interfacial Activation of Lipases in Lipid Monolayers Related to Thermodynamic Activity of Interfacial Water?. Langmuir, 2002, 18, 6294-6306.	1.6	19
60	Effect of nonprotein polymers on water-uptake properties of fish protein-based hydrogel. Journal of Applied Polymer Science, 2002, 85, 45-51.	1.3	19
61	Composition, Thermotropic Properties, and Oxidative Stability of Freeze-Dried and Spray-Dried Milk Fat Globule Membrane Isolated from Cheese Whey. Journal of Agricultural and Food Chemistry, 2011, 59, 8931-8938.	2.4	19
62	Removal of soy protein-bound phospholipids by a combination of sonication, \hat{l}^2 -cyclodextrin, and phospholipase A2 treatments. Food Chemistry, 2011, 127, 1007-1013.	4.2	19
63	Phase Separation in Two-Dimensional αs-Casein/β-Casein/Water Ternary Film at the Airâ^'Water Interface. Langmuir, 2000, 16, 6583-6589.	1.6	18
64	A Formaldehydeâ€Free Waterâ€Resistant Soy Flourâ€Based Adhesive for Plywood. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1311-1318.	0.8	17
65	On the Molecular Mechanism of Stabilization of Proteins by Cosolvents: Role of Lifshitz Electrodynamic Forces. Langmuir, 2012, 28, 9475-9486.	1.6	15
66	Thermal Destruction of Cysteine and Cystine Residues of Soy Protein under Conditions of Gelation. Journal of Food Science, 1990, 55, 1077-1080.	1.5	13
67	Enzymological characteristics of pepsinogens and pepsins purified from lizardfish (Saurida) Tj ETQq1 1 0.784314 r	rgBT /Ovei	rlock 10 Tf 5
68	Dissociation of yeast nucleoprotein complexes by chemical phosphorylation. Journal of Agricultural and Food Chemistry, 1984, 32, 1030-1032.	2.4	12
69	FLAVOR PROBLEMS IN SOY PROTEINS: ORIGIN, NATURE, CONTROL AND BINDING PHENOMENA., 1980,, 95-131.		12
70	Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways. Sub-Cellular Biochemistry, 2015, 71, 233-261.	1.0	11
71	Beyond the hydrophobic effect: Critical function of water at biological phase boundaries — A hypothesis. Advances in Colloid and Interface Science, 2015, 221, 22-33.	7.0	10
72	Diffusion and Energy Barrier Controlled Adsorption of Proteins at the Airâ€"Water Interface. ACS Symposium Series, 1991, , 104-121.	0.5	9

#	Article	IF	CITATIONS
73	Influence of amino acids on thermal stability and heat-set gelation of bovine serum albumin. Food Chemistry, 2021, 337, 127670.	4.2	9
74	Electrodynamic Pressure Modulation of Protein Stability in Cosolvents. Biochemistry, 2013, 52, 8363-8373.	1.2	8
75	Nanostructure and functionality of enzymatically repolymerized whey protein hydrolysate. Food Chemistry, 2018, 256, 405-412.	4.2	7
76	Hofmeister Order of Anions on Protein Stability Originates from Lifshitz–van der Waals Dispersion Interaction with the Protein Phase. Langmuir, 2019, 35, 12993-13002.	1.6	7
77	Activation of sphingomyelinase in lipid monolayer is related to interfacial water activity. Colloids and Surfaces B: Biointerfaces, 2005, 45, 49-55.	2.5	6
78	β yclodextrinâ€Mediated Removal of Soy Phospholipids from the Air–Water Interface. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 213-222.	0.8	6
79	Possible role of water on the structural stability of ribosomes. International Journal of Peptide and Protein Research, 1985, 26, 598-604.	0.1	2