Kasper Arthur Hettinga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6710553/publications.pdf

Version: 2024-02-01

116 3,239 32 50
papers citations h-index g-index

119 119 3528 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Testing the effects of processing on donor human Milk: Analytical methods. Food Chemistry, 2022, 373, 131413.	4.2	5
2	Heat-induced unfolding facilitates plant protein digestibility during in vitro static infant digestion. Food Chemistry, 2022, 375, 131878.	4.2	17
3	First Insight into the Variation of the Milk Serum Proteome within and between Individual Cows. Dairy, 2022, 3, 47-58.	0.7	O
4	Introduction of Heated Cow's Milk Protein in Challenge-Proven Cow's Milk Allergic Children: The iAGE Study. Nutrients, 2022, 14, 629.	1.7	6
5	Exploring Human Milk Dynamics: Interindividual Variation in Milk Proteome, Peptidome, and Metabolome. Journal of Proteome Research, 2022, 21, 1002-1016.	1.8	7
6	Processing methods of donor human milk evaluated by a blood plasma clotting assay. Innovative Food Science and Emerging Technologies, 2022, 76, 102938.	2.7	1
7	Can recombinant milk proteins replace those produced by animals?. Current Opinion in Biotechnology, 2022, 75, 102690.	3.3	20
8	Effects of High-Pressure Processing, UV-C Irradiation and Thermoultrasonication on Donor Human Milk Safety and Quality. Frontiers in Pediatrics, 2022, 10, 828448.	0.9	5
9	Gastrointestinal Protein Hydrolysis Kinetics: Opportunities for Further Infant Formula Improvement. Nutrients, 2022, 14, 1512.	1.7	8
10	Feeding hydrogenated palm fatty acids and rumen-protected protein to lactating Holstein-Friesian dairy cows modifies milk fat triacylglycerol composition and structure, and solid fat content. Journal of Dairy Science, 2022, 105, 2828-2839.	1.4	3
11	Non-invasive monitoring of in vitro gastric milk protein digestion kinetics by 1H NMR magnetization transfer. Food Chemistry, 2022, 383, 132545.	4.2	3
12	Assessment of milk protein digestion kinetics: effects of denaturation by heat and protein type used. Food and Function, 2022, 13, 5715-5729.	2.1	4
13	Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment. Food Chemistry, 2021, 337, 127973.	4.2	27
14	Exploration of an ultrasonic pulse echo system for comparison of milks, creams, and their dilutions. LWT - Food Science and Technology, 2021, 136, 110616.	2.5	6
15	Enhanced Uptake of Processed Bovine βâ€Lactoglobulin by Antigen Presenting Cells: Identification of Receptors and Implications for Allergenicity. Molecular Nutrition and Food Research, 2021, 65, e2000834.	1.5	6
16	Perspective: A Legal and Nutritional Perspective on the Introduction of Quinoa-Based Infant and Follow-on Formula in the EU. Advances in Nutrition, 2021, 12, 1100-1107.	2.9	11
17	Retaining bioactive proteins and extending shelf life of skim milk by microfiltration combined with Ultraviolet-C treatment. LWT - Food Science and Technology, 2021, 141, 110945.	2.5	5
18	Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients, 2021, 13, 1645.	1.7	54

#	Article	IF	CITATIONS
19	A tailored food safety and hygiene training approach for dairy farmers in an emerging dairy chain. Food Control, 2021, 124, 107918.	2.8	8
20	Ultrasonication retains more milk fat globule membrane proteins compared to equivalent shear-homogenization. Innovative Food Science and Emerging Technologies, 2021, 70, 102703.	2.7	21
21	Micronutrient deficiencies in critical illness. Clinical Nutrition, 2021, 40, 3780-3786.	2.3	19
22	No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods, 2021, 10, 1836.	1.9	2
23	"Donor milk banking: Improving the future― A survey on the operation of the European donor human milk banks. PLoS ONE, 2021, 16, e0256435.	1.1	13
24	Effects of microfiltration combined with ultrasonication on shelf life and bioactive protein of skim milk. Ultrasonics Sonochemistry, 2021, 77, 105668.	3.8	19
25	Thermoultrasonication, ultraviolet-C irradiation, and high-pressure processing: Novel techniques to preserve insulin in donor human milk. Clinical Nutrition, 2021, 40, 5655-5658.	2.3	6
26	High-Temperature Short-Time Preserves Human Milk's Bioactive Proteins and Their Function Better Than Pasteurization Techniques With Long Processing Times. Frontiers in Pediatrics, 2021, 9, 798609.	0.9	13
27	Effect of heat treatment on bacteriostatic activity and protein profile of bovine whey proteins. Food Research International, 2020, 127, 108688.	2.9	44
28	How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2422-2445.	5.4	130
29	Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chemistry, 2020, 314, 126153.	4.2	20
30	Lysine blockage of milk proteins in infant formula impairs overall protein digestibility and peptide release. Food and Function, 2020, 11, 358-369.	2.1	37
31	A customized assessment tool to differentiate safety and hygiene control practices in emerging dairy chains. Food Control, 2020, 111, 107072.	2.8	11
32	Stability of fat globules in UHT milk during proteolysis by the AprX protease from Pseudomonas fluorescens and by plasmin. Journal of Dairy Science, 2020, 103, 179-190.	1.4	23
33	The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 878-889.e3.	2.0	53
34	Degradation of Proteins From Colostrum and Mature Milk From Chinese Mothers Using an in vitro Infant Digestion Model. Frontiers in Nutrition, 2020, 7, 162.	1.6	6
35	Characterizing the changes of bovine milk serum proteins after simulated industrial processing. LWT - Food Science and Technology, 2020, 133, 110101.	2.5	15
36	Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements?. Food Research International, 2020, 136, 109543.	2.9	13

#	Article	lF	Citations
37	Implications of differences in safety and hygiene control practices for microbial safety and aflatoxin M1 in an emerging dairy chain: The case of Tanzania. Food Control, 2020, 118, 107453.	2.8	2
38	Hydrophobicity drives receptor-mediated uptake of heat-processed proteins by THP-1 macrophages and dendritic cells, but not cytokine responses. PLoS ONE, 2020, 15, e0236212.	1.1	5
39	Peptide Release after Simulated Infant In Vitro Digestion of Dry Heated Cow's Milk Protein and Transport of Potentially Immunoreactive Peptides across the Caco-2 Cell Monolayer. Nutrients, 2020, 12, 2483.	1.7	16
40	Mechanisms Underlying the Skin-Gut Cross Talk in the Development of IgE-Mediated Food Allergy. Nutrients, 2020, 12, 3830.	1.7	21
41	Influence of Dry Period Length of Swedish Dairy Cows on the Proteome of Colostrum. Dairy, 2020, 1, 313-325.	0.7	O
42	Changes in the milk serum proteome after thermal and non-thermal treatment. Innovative Food Science and Emerging Technologies, 2020, 66, 102544.	2.7	21
43	Short communication: Volatile profile of matured Tronch \tilde{A}^3 n cheese affected by oxytetracycline in raw goat milk. Journal of Dairy Science, 2020, 103, 6015-6021.	1.4	5
44	Heat treatment of \hat{l}^2 -lactoglobulin affects its digestion and translocation in the upper digestive tract. Food Chemistry, 2020, 330, 127184.	4.2	16
45	Prevalence of Milk Fraud in the Chinese Market and its Relationship with Fraud Vulnerabilities in the Chain. Foods, 2020, 9, 709.	1.9	8
46	Serum Protein N-Glycans in Colostrum and Mature Milk of Chinese Mothers. Journal of Agricultural and Food Chemistry, 2020, 68, 6873-6883.	2.4	15
47	The effect of low vs. high temperature dry heating on solubility and digestibility of cow's milk protein. Food Hydrocolloids, 2020, 109, 106098.	5 . 6	29
48	The Chinese milk supply chain: A fraud perspective. Food Control, 2020, 113, 107211.	2.8	26
49	Binding of CML-Modified as Well as Heat-Glycated \hat{I}^2 -lactoglobulin to Receptors for AGEs Is Determined by Charge and Hydrophobicity. International Journal of Molecular Sciences, 2020, 21, 4567.	1.8	11
50	Loss of allergy-protective capacity of raw cow's milk after heat treatment coincides with loss of immunologically active whey proteins. Food and Function, 2020, 11, 4982-4993.	2.1	24
51	Dataset on proteomic changes of whey protein after different heat treatment. Data in Brief, 2020, 29, 105227.	0.5	2
52	Maternal Allergy and the Presence of Nonhuman Proteinaceous Molecules in Human Milk. Nutrients, 2020, 12, 1169.	1.7	10
53	A THP-1 Cell Line-Based Exploration of Immune Responses Toward Heat-Treated BLG. Frontiers in Nutrition, 2020, 7, 612397.	1.6	8
54	Short communication: Short-time freezing does not alter the sensory properties or the physical stability of ultra-high-temperature hydrolyzed-lactose milk. Journal of Dairy Science, 2020, 103, 8822-8828.	1.4	3

#	Article	IF	Citations
55	Fraud vulnerability in the Dutch milk supply chain: Assessments of farmers, processors and retailers. Food Control, 2019, 95, 308-317.	2.8	45
56	Differential Effects of Dry vs. Wet Heating of \hat{l}^2 -Lactoglobulin on Formation of sRAGE Binding Ligands and slgE Epitope Recognition. Nutrients, 2019, 11, 1432.	1.7	17
57	Short communication: Changes under low ambient temperatures in the milk lipodome and metabolome of mid-lactation cows after dehorning as a calf. Journal of Dairy Science, 2019, 102, 2698-2702.	1.4	5
58	Persistent challenges in safety and hygiene control practices in emerging dairy chains: The case of Tanzania. Food Control, 2019, 105, 164-173.	2.8	19
59	The Extracellular Protease AprX from <i>Pseudomonas</i> and its Spoilage Potential for UHT Milk: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 834-852.	5.9	60
60	Human Milk Short-Chain Fatty Acid Composition is Associated with Adiposity Outcomes in Infants. Journal of Nutrition, 2019, 149, 716-722.	1.3	57
61	Variability of Serum Proteins in Chinese and Dutch Human Milk during Lactation. Nutrients, 2019, 11, 499.	1.7	23
62	Lactose in the dairy production chain. , 2019, , 231-266.		6
63	Hydrophobicity and aggregation, but not glycation, are key determinants for uptake of thermally processed Î ² -lactoglobulin by THP-1 macrophages. Food Research International, 2019, 120, 102-113.	2.9	19
64	Improving peer review quality by grading the best contribution of each student: educational principle and evaluation design. , 2019, , .		O
65	Geography and ethnicity related variation in the Chinese human milk serum proteome. Food and Function, 2019, 10, 7818-7827.	2.1	13
66	Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta, 2018, 184, 128-135.	2.9	82
67	Omics and Systems Biology: Integration of Production and Omics Data in Systems Biology. , 2018, , 463-485.		3
68	The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential. Journal of Dairy Science, 2018, 101, 2110-2126.	1.4	10
69	Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin. Food Chemistry, 2018, 263, 127-134.	4.2	39
70	Short communication: The effect of linseed oil and DGAT1 K232A polymorphism on the methane emission prediction potential of milk fatty acids. Journal of Dairy Science, 2018, 101, 5599-5604.	1.4	4
71	Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography–based milk fatty acid profiles. Journal of Dairy Science, 2018, 101, 5582-5598.	1.4	30
72	Portraying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad)MS and PTR-(ToF)MS. Food Chemistry, 2018, 239, 201-207.	4.2	29

#	Article	IF	Citations
73	Use of UV Treated Milk Powder to Increase Vaccine Efficacy in the Elderly. Frontiers in Immunology, 2018, 9, 2254.	2.2	3
74	Human Milk Oligosaccharides in Colostrum and Mature Milk of Chinese Mothers: Lewis Positive Secretor Subgroups. Journal of Agricultural and Food Chemistry, 2018, 66, 7036-7043.	2.4	65
7 5	Human milk peptides differentiate between the preterm and term infant and across varying lactational stages. Food and Function, 2017, 8, 3769-3782.	2.1	45
76	Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. Journal of Dairy Science, 2017, 100, 8939-8957.	1.4	34
77	Contribution of Dairy to Nutrient Intake in the Western Diet. , 2017, , 251-258.		O
78	Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. International Journal of Molecular Sciences, 2017, 18, 173.	1.8	56
79	Effect of Processing Intensity on Immunologically Active Bovine Milk Serum Proteins. Nutrients, 2017, 9, 963.	1.7	56
80	Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets. Animal Production Science, 2016, 56, 541.	0.6	13
81	An interactomics overview of the human and bovine milk proteome over lactation. Proteome Science, 2016, 15, 1.	0.7	37
82	Proteomics data in support of the quantification of the changes of bovine milk proteins during mammary gland involution. Data in Brief, 2016, 8, 52-55.	0.5	11
83	Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant. Data in Brief, 2016, 7, 362-365.	0.5	19
84	A proteomics-based identification of putative biomarkers for disease in bovine milk. Veterinary Immunology and Immunopathology, 2016, 174, 11-18.	0.5	21
85	Short communication: Influence of shortening the dry period of Swedish dairy cows on plasmin activity in milk. Journal of Dairy Science, 2016, 99, 9300-9306.	1.4	13
86	Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation. Journal of Agricultural and Food Chemistry, 2016, 64, 6477-6486.	2.4	23
87	Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways. Journal of Dairy Science, 2016, 99, 6251-6262.	1.4	22
88	The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands. Food and Function, 2016, 7, 239-249.	2.1	34
89	The protein and lipid composition of the membrane of milk fat globules depends on their size. Journal of Dairy Science, 2016, 99, 4726-4738.	1.4	65
90	Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant. Journal of Proteomics, 2016, 147, 40-47.	1.2	39

#	Article	IF	Citations
91	Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing. Food Research International, 2016, 82, 104-111.	2.9	59
92	Bovine Milk Proteome in the First 9 Days: Protein Interactions in Maturation of the Immune and Digestive System of the Newborn. PLoS ONE, 2015, 10, e0116710.	1.1	79
93	Difference in the Breast Milk Proteome between Allergic and Non-Allergic Mothers. PLoS ONE, 2015, 10, e0122234.	1.1	39
94	Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. Journal of Dairy Science, 2015, 98, 3460-3469.	1.4	34
95	Changes in the repertoire of bovine milk proteins during mammary involution. EuPA Open Proteomics, 2015, 9, 65-75.	2.5	12
96	Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. Journal of Dairy Science, 2015, 98, 1915-1927.	1.4	98
97	Perspective on calf and mammary gland development through changes in the bovine milk proteome over a complete lactation. Journal of Dairy Science, 2015, 98, 5362-5373.	1.4	34
98	Dairy in a sustainable diet: a question of balance. Nutrition Reviews, 2015, 73, 48-54.	2.6	12
99	A proteomic perspective on the changes in milk proteins due to high somatic cell count. Journal of Dairy Science, 2015, 98, 5339-5351.	1.4	33
100	Peptidomic analysis of healthy and subclinically mastitic bovine milk. International Dairy Journal, 2015, 46, 46-52.	1.5	40
101	Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth. Journal of Nutrition, 2015, 145, 425-433.	1.3	63
102	Effect of shortening or omitting the dry period of Holstein-Friesian cows on casein composition of milk. Journal of Dairy Science, 2015, 98, 8678-8687.	1.4	11
103	Short communication: Practical issues in implementing volatile metabolite analysis for identifying mastitis pathogens. Journal of Dairy Science, 2015, 98, 7906-7910.	1.4	2
104	Study used wrong assumption about galactose content of fermented dairy products. BMJ, The, 2014, 349, g7000-g7000.	3.0	4
105	Identification of lipid synthesis and secretion proteins in bovine milk. Journal of Dairy Research, 2014, 81, 65-72.	0.7	23
106	Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Research International, 2014, 63, 203-209.	2.9	46
107	Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. International Journal of Food Microbiology, 2014, 177, 29-36.	2.1	167
108	Concentrations of n-3 and n-6 fatty acids in Dutch bovine milk fat and their contribution to human dietary intake. Journal of Dairy Science, 2013, 96, 4173-4181.	1.4	21

#	Article	IF	CITATIONS
109	Changes in Milk Proteome and Metabolome Associated with Dry Period Length, Energy Balance, and Lactation Stage in Postparturient Dairy Cows. Journal of Proteome Research, 2013, 12, 3288-3296.	1.8	83
110	Milk Fat Content and DGAT1 Genotype Determine Lipid Composition of the Milk Fat Globule Membrane. PLoS ONE, 2013, 8, e68707.	1.1	43
111	The Host Defense Proteome of Human and Bovine Milk. PLoS ONE, 2011, 6, e19433.	1.1	210
112	The origin of the volatile metabolites found in mastitis milk. Veterinary Microbiology, 2009, 137, 384-387.	0.8	40
113	The influence of incubation on the formation of volatile bacterial metabolites in mastitis milk. Journal of Dairy Science, 2009, 92, 4901-4905.	1.4	9
114	Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. Journal of Dairy Science, 2009, 92, 6202-6209.	1.4	106
115	Detection of Mastitis Pathogens by Analysis of Volatile Bacterial Metabolites. Journal of Dairy Science, 2008, 91, 3834-3839.	1.4	67
116	Breastmilk: A Source of SARS-CoV-2 Specific IgA Antibodies. SSRN Electronic Journal, 0, , .	0.4	7