
Francisco M Vega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A protocol to enrich in undifferentiated cells from neuroblastoma tumor tissue samples and cell lines. STAR Protocols, 2022, 3, 101260.	1.2	0
2	Non-Canonical Kinases and Substrates in Cancer Progression. Cancers, 2021, 13, 1628.	3.7	0
3	Hypoxia in the Initiation and Progression of Neuroblastoma Tumours. International Journal of Molecular Sciences, 2020, 21, 39.	4.1	21
4	Identification of VRK1 as a New Neuroblastoma Tumor Progression Marker Regulating Cell Proliferation. Cancers, 2020, 12, 3465.	3.7	15
5	A triple action CDK4/6-PI3K-BET inhibitor with augmented cancer cell cytotoxicity. Cell Discovery, 2020, 6, 49.	6.7	10
6	Response to "High CD44 expression is not a prognosis marker in patients with high-risk neuroblastoma― EBioMedicine, 2020, 53, 102703.	6.1	0
7	CD44-high neural crest stem-like cells are associated with tumour aggressiveness and poor survival in neuroblastoma tumours. EBioMedicine, 2019, 49, 82-95.	6.1	32
8	The RhoB small GTPase in physiology and disease. Small GTPases, 2018, 9, 384-393.	1.6	62
9	RhoC (RHOC). , 2018, , 4691-4699.		0
10	The atheroma plaque secretome stimulates the mobilization of endothelial progenitor cells ex vivo. Journal of Molecular and Cellular Cardiology, 2017, 105, 12-23.	1.9	14
11	Association of high microvessel αvβ3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget, 2017, 8, 52193-52210.	1.8	24
12	Neural crest derived progenitor cells contribute to tumor stroma and aggressiveness in stage 4/M neuroblastoma. Oncotarget, 2017, 8, 89775-89792.	1.8	4
13	Abstract LB-298: The novel triple PI3K-CDK4/6-BRD4 inhibitor SRX3177 harnesses synthetic lethality relationships to orthogonally disrupt cancer cell signaling. , 2017, , .		0
14	Oncogenic Sox2 regulates and cooperates with VRK1 in cell cycle progression and differentiation. Scientific Reports, 2016, 6, 28532.	3.3	14
15	RhoC (RHOC). , 2016, , 1-9.		0
16	The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Communication and Signaling, 2015, 13, 6.	6.5	26
17	Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 2012, 199, 653-668.	5.2	160
18	RhoB regulates cell migration through altered focal adhesion dynamics. Open Biology, 2012, 2, 120076.	3.6	52

2

FRANCISCO M VEGA

#	Article	IF	CITATIONS
19	Roles of VRK1 as a new player in the control of biological processes required for cell division. Cellular Signalling, 2011, 23, 1267-1272.	3.6	78
20	RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. Journal of Cell Biology, 2011, 193, 655-665.	5.2	227
21	Characterisation of tumoral markers correlated with ErbB2 (HER2/ <i>Neu</i>) overexpression and metastasis in breast cancer. Proteomics - Clinical Applications, 2008, 2, 1313-1326.	1.6	11
22	Rho GTPases in cancer cell biology. FEBS Letters, 2008, 582, 2093-2101.	2.8	652
23	The C/H3 Domain of p300 Is Required to Protect VRK1 and VRK2 from their Downregulation Induced by p53. PLoS ONE, 2008, 3, e2649.	2.5	28
24	VRK1 (Vaccinia-related kinase 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2008, , .	0.1	0
25	Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Archives of Biochemistry and Biophysics, 2007, 465, 219-226.	3.0	49
26	SnapShot: Rho Family GTPases. Cell, 2007, 129, 1430.e1-1430.e2.	28.9	55
27	The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS Journal, 2006, 273, 2487-2504.	4.7	72
28	p53 Downregulates Its Activating Vaccinia-Related Kinase 1, Forming a New Autoregulatory Loop. Molecular and Cellular Biology, 2006, 26, 4782-4793.	2.3	54
29	Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. Journal of Cell Science, 2006, 119, 2749-2757.	2.0	168
30	VRK1 Signaling Pathway in the Context of the Proliferation Phenotype in Head and Neck Squamous Cell Carcinoma. Molecular Cancer Research, 2006, 4, 177-185.	3.4	78
31	p53 Stabilization and Accumulation Induced by Human Vaccinia-Related Kinase 1. Molecular and Cellular Biology, 2004, 24, 10366-10380.	2.3	125
32	Human Vaccinia-related Kinase 1 (VRK1) Activates the ATF2 Transcriptional Activity by Novel Phosphorylation on Thr-73 and Ser-62 and Cooperates with JNK. Journal of Biological Chemistry, 2004, 279, 27458-27465.	3.4	110
33	c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene, 2004, 23, 8950-8958.	5.9	100
34	The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology, 2004, 328, 254-265.	2.4	40
35	Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Letters, 2003, 544, 176-180.	2.8	60
36	Kinetic Properties of p53 Phosphorylation by the Human Vaccinia-Related Kinase 1. Archives of Biochemistry and Biophysics, 2002, 399, 1-5.	3.0	51