Johan M Winne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709603/publications.pdf Version: 2024-02-01

IOHAN M WINNE

#	Article	IF	CITATIONS
1	Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angewandte Chemie - International Edition, 2022, 61, e202113872.	7.2	54
2	Triazolinedione protein modification: from an overlooked off-target effect to a tryptophan-based bioconjugation strategy. Chemical Science, 2022, 13, 5390-5397.	3.7	11
3	Dearomative (3 + 2) Cycloadditions of Unprotected Indoles. Organic Letters, 2022, 24, 4119-4123.	2.4	6
4	Masked Primary Amines for a Controlled Plastic Flow of Vitrimers. ACS Macro Letters, 2022, 11, 919-924.	2.3	22
5	Stereoselective Gold(I)â€Catalyzed Vinylcyclopropanation via Generation of a Sulfurâ€Substituted Vinyl Carbene Equivalent. Angewandte Chemie - International Edition, 2021, 60, 4070-4074.	7.2	17
6	Stereoselective Gold(I)â€Catalyzed Vinylcyclopropanation via Generation of a Sulfurâ€Substituted Vinyl Carbene Equivalent. Angewandte Chemie, 2021, 133, 4116-4120.	1.6	2
7	Polyaddition Synthesis Using Alkyne Esters for the Design of Vinylogous Urethane Vitrimers. Macromolecules, 2021, 54, 7931-7942.	2.2	29
8	Reprocessing of Covalent Adaptable Polyamide Networks through Internal Catalysis and Ring-Size Effects. Journal of the American Chemical Society, 2021, 143, 15834-15844.	6.6	52
9	Stereodivergent Synthesis of Biologically Active Spironucleoside Scaffolds via Catalytic Cyclopropanation of 4-exo-Methylene Furanosides. Journal of Organic Chemistry, 2021, 86, 17344-17361.	1.7	5
10	Regio- and Stereoselective Synthesis of C-4′ Spirocyclobutyl Ribofuranose Scaffolds and Their Use as Biologically Active Nucleoside Analogues. Organic Letters, 2021, 23, 8828-8833.	2.4	5
11	Fast processing of highly crosslinked, low-viscosity vitrimers. Materials Horizons, 2020, 7, 104-110.	6.4	152
12	Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol–yne Crossâ€Linking. Angewandte Chemie - International Edition, 2020, 59, 3609-3617.	7.2	118
13	Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol–yne Crossâ€Linking. Angewandte Chemie, 2020, 132, 3637-3646.	1.6	19
14	Double neighbouring group participation for ultrafast exchange in phthalate monoester networks. Polymer Chemistry, 2020, 11, 5207-5215.	1.9	39
15	Internal catalysis for dynamic covalent chemistry applications and polymer science. Chemical Society Reviews, 2020, 49, 8425-8438.	18.7	128
16	Influence of the polymer matrix on the viscoelastic behaviour of vitrimers. Polymer Chemistry, 2020, 11, 5377-5385.	1.9	73
17	Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Times. Macromolecules, 2020, 53, 2485-2495.	2.2	92
18	Vitrimers: directing chemical reactivity to control material properties. Chemical Science, 2020, 11, 4855-4870.	3.7	312

Johan M Winne

#	Article	IF	CITATIONS
19	Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification As a Versatile Dynamic Cross-Linking Chemistry. Journal of the American Chemical Society, 2019, 141, 15277-15287.	6.6	172
20	Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nature Chemical Biology, 2019, 15, 641-649.	3.9	86
21	Filler reinforced polydimethylsiloxane-based vitrimers. Polymer, 2019, 172, 239-246.	1.8	59
22	Synthetic biomolecules: from blind watchmakers to synthetic biologists. Current Opinion in Chemical Biology, 2019, 52, A3-A5.	2.8	0
23	Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polymer Chemistry, 2019, 10, 6091-6108.	1.9	399
24	An Intramolecular Cycloaddition Approach to the Kauranoid Family of Diterpene Metabolites. Organic Letters, 2019, 21, 310-314.	2.4	5
25	Vinylogous Urea Vitrimers and Their Application in Fiber Reinforced Composites. Macromolecules, 2018, 51, 2054-2064.	2.2	170
26	Tunable Blocking Agents for Temperature-Controlled Triazolinedione-Based Cross-Linking Reactions. Macromolecules, 2018, 51, 3156-3164.	2.2	26
27	The Elusive Seven-Membered Cyclic Imino Ether Tetrahydrooxazepine. Journal of the American Chemical Society, 2018, 140, 17404-17408.	6.6	18
28	Fluorinated Vitrimer Elastomers with a Dual Temperature Response. Journal of the American Chemical Society, 2018, 140, 13272-13284.	6.6	181
29	Stereoselective and Modular Assembly Method for Heterocycleâ€Fused Daucane Sesquiterpenoids. Chemistry - A European Journal, 2018, 24, 13783-13787.	1.7	10
30	Mechanistical Insights into the Bioconjugation Reaction of Triazolinediones with Tyrosine. Journal of Organic Chemistry, 2018, 83, 10248-10260.	1.7	15
31	Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. Plant Cell, 2018, 30, 2573-2593.	3.1	16
32	Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions. Chemical Science, 2017, 8, 3098-3108.	3.7	45
33	Micellar Paclitaxel-Initiated RAFT Polymer Conjugates with Acid-Sensitive Behavior. ACS Macro Letters, 2017, 6, 272-276.	2.3	29
34	Covalent Fluorination Strategies for the Surface Modification of Polydienes. Macromolecular Rapid Communications, 2017, 38, 1700122.	2.0	25
35	Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8, 14857.	5.8	365
36	Polydimethylsiloxane quenchable vitrimers. Polymer Chemistry, 2017, 8, 6590-6593.	1.9	136

Johan M Winne

#	Article	IF	CITATIONS
37	Heterocycles as Moderators of Allyl Cation Cycloaddition Reactivity. Synlett, 2017, 28, 2345-2352.	1.0	7
38	Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts. ACS Macro Letters, 2017, 6, 930-934.	2.3	207
39	Synthetic Protocol for AFCS: A Biologically Active Fluorescent Castasterone Analog Conjugated to an Alexa Fluor 647 Dye. Methods in Molecular Biology, 2017, 1564, 9-21.	0.4	2
40	(5,6â€Dihydroâ€1,4â€dithiinâ€2â€yl)methanol as a Versatile Allylâ€Cation Equivalent in (3+2) Cycloaddition Reactions. Angewandte Chemie, 2016, 128, 13448-13452.	1.6	5
41	Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications, 2016, 7, 11710.	5.8	98
42	(5,6â€Dihydroâ€1,4â€dithiinâ€2â€yl)methanol as a Versatile Allylâ€Cation Equivalent in (3+2) Cycloaddition Reactions. Angewandte Chemie - International Edition, 2016, 55, 13254-13258.	7.2	16
43	Triazolinediones as Highly Enabling Synthetic Tools. Chemical Reviews, 2016, 116, 3919-3974.	23.0	160
44	Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7, 30-38.	3.7	1,115
45	V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants, 2015, 1, 15094.	4.7	127
46	Possibility of [1,5] Sigmatropic Shifts in Bicyclo[4.2.0]octa-2,4-dienes. Journal of Organic Chemistry, 2015, 80, 2609-2620.	1.7	13
47	A Rapid and Stereocontrolled Synthesis of the Zizaane Ring System by Using an Intramolecular (4+3) Cycloaddition Reaction. Synlett, 2015, 26, 467-470.	1.0	5
48	Vinylogous Urethane Vitrimers. Advanced Functional Materials, 2015, 25, 2451-2457.	7.8	763
49	From plant oils to plant foils: Straightforward functionalization and crosslinking of natural plant oils with triazolinediones. European Polymer Journal, 2015, 65, 286-297.	2.6	44
50	Total Synthesis of (+/â^')â€Frondosinâ€B and (+/â^')â€5â€ <i>epi</i> â€Liphagal by Using a Concise (4+3) Cyclo Approach. Chemistry - A European Journal, 2014, 20, 253-262.	addition	40
51	A Three‣tep Synthesis of the Guaianolide Ring System. European Journal of Organic Chemistry, 2014, 2014, 3097-3100.	1.2	11
52	A strategy towards the synthesis of plumarellide based on biosynthesis speculation, featuring a transannular 4+2 type cyclisation from a cembranoid furanoxonium ion intermediate. Tetrahedron, 2014, 70, 7229-7240.	1.0	17
53	Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nature Chemistry, 2014, 6, 815-821.	6.6	285
54	Synthesis of 2â€Ethylâ€19â€ <i>nor</i> Analogs of 1α,25â€Dihydroxyvitamin D ₃ . European Journal Organic Chemistry, 2013, 2013, 728-735.	of 1.2	7

4

#	Article	IF	CITATIONS
55	Exploiting furan's versatile reactivity in reversible and irreversible orthogonal peptide labeling. Chemical Communications, 2013, 49, 2927.	2.2	31
56	Exploiting Furan's Versatile Reactivity in Reversible and Irreversible Orthogonal Peptide Labeling. , 2013, , .		0
57	An Approach to exo-Enol Ether - Cyclic Ketal Structures Found in Marine Cembranoids, Based on Silver-Assisted Cyclisations of Enynone Precursors. Synlett, 2012, 23, 723-726.	1.0	8
58	Rücktitelbild: Scope and Mechanism of the (4+3) Cycloaddition Reaction of Furfuryl Cations (Angew.) Tj ETQq	0 0 0 rgB ⁻ 1.6 rgB ⁻	Г /Overlock 1С
59	Scope and Mechanism of the (4+3) Cycloaddition Reaction of Furfuryl Cations. Angewandte Chemie - International Edition, 2011, 50, 11990-11993.	7.2	65
60	Back Cover: Scope and Mechanism of the (4+3) Cycloaddition Reaction of Furfuryl Cations (Angew.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
61	Synthetic studies towards oxygenated and unsaturated furanocembranoid macrocycles. Precursors to plumarellide, rameswaralide and mandapamates. Tetrahedron Letters, 2010, 51, 5044-5047.	0.7	14
62	A synthetic approach to C-nor-D-homosteroids based on a cascade of radical cyclisations from a vinylcyclopropane-substituted acyl radical precursor. Tetrahedron, 2009, 65, 5767-5775.	1.0	20
63	An intramolecular [4+3]-cycloaddition approach to rameswaralide inspired by biosynthesis speculation. Tetrahedron Letters, 2009, 50, 7310-7313.	0.7	48
64	A concise total synthesis of (\hat{A} ±)-anthecularin. Organic and Biomolecular Chemistry, 2009, 7, 639-640.	1.5	28
65	Nonenzymic polycyclisation of analogues of oxidosqualene with a preformed C-ring. Organic and Biomolecular Chemistry, 2008, 6, 1918.	1.5	3
66	Application of theB-Alkyl Suzukiâ^'Miyaura Cross-Coupling Reaction to the Stereoselective Synthesis of Analogues of (3S)-Oxidosqualene. Organic Letters, 2006, 8, 4815-4818.	2.4	13
67	Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angewandte Chemie, 0, , .	1.6	7
68	Synthesis of Cyclopropyl Pinacol Boronic Esters from DibromoÂcyclopropanes. Synlett, 0, 33, .	1.0	2