Johan M Winne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709603/publications.pdf

Version: 2024-02-01

68 papers 6,079 citations

172386 29 h-index 65 g-index

79 all docs

79 docs citations

79 times ranked 3624 citing authors

#	Article	IF	CITATIONS
1	Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7, 30-38.	3.7	1,115
2	Vinylogous Urethane Vitrimers. Advanced Functional Materials, 2015, 25, 2451-2457.	7.8	763
3	Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polymer Chemistry, 2019, 10, 6091-6108.	1.9	399
4	Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8, 14857.	5.8	365
5	Vitrimers: directing chemical reactivity to control material properties. Chemical Science, 2020, 11, 4855-4870.	3.7	312
6	Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nature Chemistry, 2014, 6, 815-821.	6.6	285
7	Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts. ACS Macro Letters, 2017, 6, 930-934.	2.3	207
8	Fluorinated Vitrimer Elastomers with a Dual Temperature Response. Journal of the American Chemical Society, 2018, 140, 13272-13284.	6.6	181
9	Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification As a Versatile Dynamic Cross-Linking Chemistry. Journal of the American Chemical Society, 2019, 141, 15277-15287.	6.6	172
10	Vinylogous Urea Vitrimers and Their Application in Fiber Reinforced Composites. Macromolecules, 2018, 51, 2054-2064.	2.2	170
11	Triazolinediones as Highly Enabling Synthetic Tools. Chemical Reviews, 2016, 116, 3919-3974.	23.0	160
12	Fast processing of highly crosslinked, low-viscosity vitrimers. Materials Horizons, 2020, 7, 104-110.	6.4	152
13	Polydimethylsiloxane quenchable vitrimers. Polymer Chemistry, 2017, 8, 6590-6593.	1.9	136
14	Internal catalysis for dynamic covalent chemistry applications and polymer science. Chemical Society Reviews, 2020, 49, 8425-8438.	18.7	128
15	V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants, 2015, 1, 15094.	4.7	127
16	Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol–yne Cross‣inking. Angewandte Chemie - International Edition, 2020, 59, 3609-3617.	7.2	118
17	Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications, 2016, 7, 11710.	5.8	98
18	Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Times. Macromolecules, 2020, 53, 2485-2495.	2.2	92

#	Article	IF	Citations
19	Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nature Chemical Biology, 2019, 15, 641-649.	3.9	86
20	Influence of the polymer matrix on the viscoelastic behaviour of vitrimers. Polymer Chemistry, 2020, 11, 5377-5385.	1.9	73
21	Scope and Mechanism of the (4+3) Cycloaddition Reaction of Furfuryl Cations. Angewandte Chemie - International Edition, 2011, 50, 11990-11993.	7.2	65
22	Filler reinforced polydimethylsiloxane-based vitrimers. Polymer, 2019, 172, 239-246.	1.8	59
23	Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angewandte Chemie - International Edition, 2022, 61, e202113872.	7.2	54
24	Reprocessing of Covalent Adaptable Polyamide Networks through Internal Catalysis and Ring-Size Effects. Journal of the American Chemical Society, 2021, 143, 15834-15844.	6.6	52
25	An intramolecular [4+3]-cycloaddition approach to rameswaralide inspired by biosynthesis speculation. Tetrahedron Letters, 2009, 50, 7310-7313.	0.7	48
26	Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions. Chemical Science, 2017, 8, 3098-3108.	3.7	45
27	From plant oils to plant foils: Straightforward functionalization and crosslinking of natural plant oils with triazolinediones. European Polymer Journal, 2015, 65, 286-297.	2.6	44
28	Total Synthesis of (+/â^')â€Frondosinâ€B and (+/â^')â€5â€ <i>epi</i> â€Liphagal by Using a Concise (4+3) Cyclos Approach. Chemistry - A European Journal, 2014, 20, 253-262.	addition 1.7	40
29	Double neighbouring group participation for ultrafast exchange in phthalate monoester networks. Polymer Chemistry, 2020, 11, 5207-5215.	1.9	39
30	Exploiting furan's versatile reactivity in reversible and irreversible orthogonal peptide labeling. Chemical Communications, 2013, 49, 2927.	2.2	31
31	Micellar Paclitaxel-Initiated RAFT Polymer Conjugates with Acid-Sensitive Behavior. ACS Macro Letters, 2017, 6, 272-276.	2.3	29
32	Polyaddition Synthesis Using Alkyne Esters for the Design of Vinylogous Urethane Vitrimers. Macromolecules, 2021, 54, 7931-7942.	2.2	29
33	A concise total synthesis of $(\hat{A}\pm)$ -anthecularin. Organic and Biomolecular Chemistry, 2009, 7, 639-640.	1.5	28
34	Tunable Blocking Agents for Temperature-Controlled Triazolinedione-Based Cross-Linking Reactions. Macromolecules, 2018, 51, 3156-3164.	2.2	26
35	Covalent Fluorination Strategies for the Surface Modification of Polydienes. Macromolecular Rapid Communications, 2017, 38, 1700122.	2.0	25
36	Masked Primary Amines for a Controlled Plastic Flow of Vitrimers. ACS Macro Letters, 2022, 11, 919-924.	2.3	22

#	Article	lF	CITATIONS
37	A synthetic approach to C-nor-D-homosteroids based on a cascade of radical cyclisations from a vinylcyclopropane-substituted acyl radical precursor. Tetrahedron, 2009, 65, 5767-5775.	1.0	20
38	Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol–yne Cross‣inking. Angewandte Chemie, 2020, 132, 3637-3646.	1.6	19
39	The Elusive Seven-Membered Cyclic Imino Ether Tetrahydrooxazepine. Journal of the American Chemical Society, 2018, 140, 17404-17408.	6.6	18
40	A strategy towards the synthesis of plumarellide based on biosynthesis speculation, featuring a transannular 4+2 type cyclisation from a cembranoid furanoxonium ion intermediate. Tetrahedron, 2014, 70, 7229-7240.	1.0	17
41	Stereoselective Gold(I)â€Catalyzed Vinylcyclopropanation via Generation of a Sulfurâ€Substituted Vinyl Carbene Equivalent. Angewandte Chemie - International Edition, 2021, 60, 4070-4074.	7.2	17
42	(5,6â€Dihydroâ€1,4â€dithiinâ€2â€yl)methanol as a Versatile Allylâ€Cation Equivalent in (3+2) Cycloaddition Reactions. Angewandte Chemie - International Edition, 2016, 55, 13254-13258.	7.2	16
43	Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. Plant Cell, 2018, 30, 2573-2593.	3.1	16
44	Mechanistical Insights into the Bioconjugation Reaction of Triazolinediones with Tyrosine. Journal of Organic Chemistry, 2018, 83, 10248-10260.	1.7	15
45	Synthetic studies towards oxygenated and unsaturated furanocembranoid macrocycles. Precursors to plumarellide, rameswaralide and mandapamates. Tetrahedron Letters, 2010, 51, 5044-5047.	0.7	14
46	Application of the B-Alkyl Suzukiâ "Miyaura Cross-Coupling Reaction to the Stereoselective Synthesis of Analogues of (3S)-Oxidosqualene. Organic Letters, 2006, 8, 4815-4818.	2.4	13
47	Possibility of [1,5] Sigmatropic Shifts in Bicyclo[4.2.0]octa-2,4-dienes. Journal of Organic Chemistry, 2015, 80, 2609-2620.	1.7	13
48	A Threeâ€Step Synthesis of the Guaianolide Ring System. European Journal of Organic Chemistry, 2014, 2014, 3097-3100.	1.2	11
49	Triazolinedione protein modification: from an overlooked off-target effect to a tryptophan-based bioconjugation strategy. Chemical Science, 2022, 13, 5390-5397.	3.7	11
50	Stereoselective and Modular Assembly Method for Heterocycleâ€Fused Daucane Sesquiterpenoids. Chemistry - A European Journal, 2018, 24, 13783-13787.	1.7	10
51	An Approach to exo-Enol Ether - Cyclic Ketal Structures Found in Marine Cembranoids, Based on Silver-Assisted Cyclisations of Enynone Precursors. Synlett, 2012, 23, 723-726.	1.0	8
52	Synthesis of 2â€Ethyl‶9â€ <i>nor</i> Analogs of 1α,25â€Dihydroxyvitamin D ₃ . European Journal Organic Chemistry, 2013, 2013, 728-735.	$\operatorname{of}_{1.2}$	7
53	Heterocycles as Moderators of Allyl Cation Cycloaddition Reactivity. Synlett, 2017, 28, 2345-2352.	1.0	7
54	Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angewandte Chemie, 0, , .	1.6	7

#	Article	IF	CITATIONS
55	Dearomative (3 + 2) Cycloadditions of Unprotected Indoles. Organic Letters, 2022, 24, 4119-4123.	2.4	6
56	A Rapid and Stereocontrolled Synthesis of the Zizaane Ring System by Using an Intramolecular (4+3) Cycloaddition Reaction. Synlett, 2015, 26, 467-470.	1.0	5
57	(5,6â€Dihydroâ€1,4â€dithiinâ€2â€yl)methanol as a Versatile Allylâ€Cation Equivalent in (3+2) Cycloaddition Reactions. Angewandte Chemie, 2016, 128, 13448-13452.	1.6	5
58	An Intramolecular Cycloaddition Approach to the Kauranoid Family of Diterpene Metabolites. Organic Letters, 2019, 21, 310-314.	2.4	5
59	Stereodivergent Synthesis of Biologically Active Spironucleoside Scaffolds via Catalytic Cyclopropanation of 4-exo-Methylene Furanosides. Journal of Organic Chemistry, 2021, 86, 17344-17361.	1.7	5
60	Regio- and Stereoselective Synthesis of C-4′ Spirocyclobutyl Ribofuranose Scaffolds and Their Use as Biologically Active Nucleoside Analogues. Organic Letters, 2021, 23, 8828-8833.	2.4	5
61	Nonenzymic polycyclisation of analogues of oxidosqualene with a preformed C-ring. Organic and Biomolecular Chemistry, 2008, 6, 1918.	1.5	3
62	Stereoselective Gold(I)â€Catalyzed Vinylcyclopropanation via Generation of a Sulfurâ€Substituted Vinyl Carbene Equivalent. Angewandte Chemie, 2021, 133, 4116-4120.	1.6	2
63	Synthetic Protocol for AFCS: A Biologically Active Fluorescent Castasterone Analog Conjugated to an Alexa Fluor 647 Dye. Methods in Molecular Biology, 2017, 1564, 9-21.	0.4	2
64	Synthesis of Cyclopropyl Pinacol Boronic Esters from DibromoÂeyclopropanes. Synlett, 0, 33, .	1.0	2
65	Rýcktitelbild: Scope and Mechanism of the (4+3) Cycloaddition Reaction of Furfuryl Cations (Angew.) Tj ETQq1	1.0.78431	14 rgBT /Ove
66	Back Cover: Scope and Mechanism of the (4+3) Cycloaddition Reaction of Furfuryl Cations (Angew.) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf
67	Synthetic biomolecules: from blind watchmakers to synthetic biologists. Current Opinion in Chemical Biology, 2019, 52, A3-A5.	2.8	O
68	Exploiting Furan's Versatile Reactivity in Reversible and Irreversible Orthogonal Peptide Labeling. , 2013, , .		0