

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709598/publications.pdf

Version: 2024-02-01

VINLL

#	Article	IF	CITATIONS
1	Design Methodology of Free-Positioning Nonoverlapping Wireless Charging for Consumer Electronics Based on Antiparallel Windings. IEEE Transactions on Industrial Electronics, 2022, 69, 825-834.	5.2	60
2	Dual-Side Phase-Shift Control of Wireless Power Transfer Implemented on Primary Side Based on Driving Windings. IEEE Transactions on Industrial Electronics, 2021, 68, 8999-9002.	5.2	43
3	Small-Signal Models With Extended Frequency Range for DC–DC Converters With Large Modulation Ripple Amplitude. IEEE Transactions on Power Electronics, 2018, 33, 8151-8163.	5.4	34
4	Approximate Discrete-Time Modeling of DC–DC Converters With Consideration of the Effects of Pulse Width Modulation. IEEE Transactions on Power Electronics, 2018, 33, 7071-7082.	5.4	31
5	A Power Adaptive Impedance Reshaping Strategy for Cascaded DC System With Buck-Type Constant Power Load. IEEE Transactions on Power Electronics, 2022, 37, 8909-8920.	5.4	19
6	Reconsideration of Loop Gain and Its Measurement in DC–DC Converters. IEEE Transactions on Power Electronics, 2019, 34, 6906-6921.	5.4	16
7	Stability Issue of Cascaded Systems With Consideration of Switching Ripple Interaction. IEEE Transactions on Power Electronics, 2019, 34, 7040-7052.	5.4	15
8	Soft Switching for Strongly Coupled Wireless Power Transfer System With 90° Dual-Side Phase Shift. IEEE Transactions on Industrial Electronics, 2022, 69, 282-292.	5.2	15
9	Approximate Discrete-Time Small-Signal Models of DC–DC Converters With Consideration of Practical Pulsewidth Modulation and Stability Improvement Methods. IEEE Transactions on Power Electronics, 2019, 34, 4920-4936.	5.4	11
10	Coil Relative Position Transient Issue in Wireless Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2022, 69, 2621-2630.	5.2	8
11	Small-Signal Modeling for Phase-Shift Controlled Resonant Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 11026-11034.	5.2	7
12	Small-Signal Models of Resonant Converter With Consideration of Different Duty-Cycle Control Schemes. IEEE Transactions on Power Electronics, 2021, 36, 13234-13247.	5.4	6
13	A Three-Phase Multiplexing Arm Modular Multilevel Converter With High Power Density and Small Volume. IEEE Transactions on Power Electronics, 2022, 37, 14587-14600.	5.4	6
14	A generic and accurate frequency-domain model for buck, boost and buck-boost converters. , 2014, , .		5
15	Passive Current Sharing of a Multiphase Inverter Based on Parallel Resonance. IEEE Transactions on Industrial Electronics, 2022, 69, 8625-8632.	5.2	4
16	General Multi-Frequency Small-Signal Model for Resonant Converters. IEEE Transactions on Power Electronics, 2022, 37, 3892-3912.	5.4	4
17	A General Approach to Sampled-Data Modeling for Ripple-Based Control—Part II: Constant ON-Time and Constant OFF-Time Control. IEEE Transactions on Power Electronics, 2022, 37, 6385-6396.	5.4	3
18	A General Approach to Sampled-Data Modeling for Ripple-Based Control—Part I: Peak/Valley Current Mode and Peak/Valley Voltage Mode. IEEE Transactions on Power Electronics, 2022, 37, 6371-6384.	5.4	3

0

#	Article	IF	CITATIONS
19	Pulsewidth-Modulator-Based Transfer Function Measurement Method for Variable Frequency-Controlled Half- and Full-Bridge Converters. IEEE Transactions on Power Electronics, 2021, 36, 9711-9716.	5.4	1

20 Inverter Phase Current Balancing for Wireless Power Transfer Systems Based on Parallel Resonant Networks. , 2021, , .