Yufeng Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science, 2019, 73, 26-64.	31.2	327
2	Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chemical Engineering Journal, 2016, 294, 281-289.	12.7	134
3	Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant. Fuel, 2017, 199, 653-661.	6.4	103
4	Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Processing Technology, 2009, 90, 643-651.	7.2	93
5	Study on emission of hazardous trace elements in a 350ÂMW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead. Environmental Pollution, 2017, 226, 404-411.	7.5	82
6	Mercury removal and synergistic capture of SO2/NO by ammonium halides modified rice husk char. Fuel, 2016, 172, 160-169.	6.4	81
7	Study on emission of hazardous trace elements in a 350ÂMW coal-fired power plant. Part 1. Mercury. Environmental Pollution, 2017, 229, 863-870.	7.5	69
8	Effect of flue gas component and ash composition on elemental mercury oxidation/adsorption by NH4Br modified fly ash. Chemical Engineering Journal, 2018, 345, 578-585.	12.7	67
9	CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean Journal of Chemical Engineering, 2009, 26, 1144-1154.	2.7	64
10	Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China. Energy & Fuels, 2016, 30, 5937-5944.	5.1	55
11	Inherent thermal regeneration performance of different MnO2 crystallographic structures for mercury removal. Journal of Hazardous Materials, 2019, 374, 267-275.	12.4	50
12	Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas. Fuel, 2021, 285, 119131.	6.4	47
13	Experimental Study on Mercury Adsorption and Adsorbent Regeneration of Sulfur-Loaded Activated Carbon. Energy & Fuels, 2018, 32, 11023-11029.	5.1	45
14	Migration Behavior of Trace Elements at a Coal-Fired Power Plant with Different Boiler Loads. Energy & Fuels, 2017, 31, 747-754.	5.1	41
15	Effects of Acidic Gases on Mercury Adsorption by Activated Carbon in Simulated Oxy-Fuel Combustion Flue Gas. Energy & amp; Fuels, 2017, 31, 9745-9751.	5.1	39
16	Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury. Chemosphere, 2017, 184, 711-719.	8.2	38
17	Influence of Flue Gas Conditions on Mercury Removal by Activated Carbon Injection in a Pilot-Scale Circulating Fluidized Bed Combustion System. Industrial & Engineering Chemistry Research, 2019, 58, 15553-15561.	3.7	37
18	Kinetics and Mechanism Study of Mercury Adsorption by Activated Carbon in Wet Oxy-Fuel Conditions. Energy & Fuels, 2019, 33, 1344-1353.	5.1	36

#	Article	IF	CITATIONS
19	Distribution and Speciation Transformation of Hazardous Trace Element Arsenic in Particulate Matter of a Coal-Fired Power Plant. Energy & Fuels, 2018, 32, 6049-6055.	5.1	33
20	The effect of mechanical-chemical-brominated modification on physicochemical properties and mercury removal performance of coal-fired by-product. Fuel, 2020, 266, 117041.	6.4	31
21	Experimental Study on Mercury Removal and Regeneration of SO ₂ Modified Activated Carbon. Industrial & Engineering Chemistry Research, 2019, 58, 13190-13197.	3.7	30
22	Partitioning and Emission of Hazardous Trace Elements in a 100 MW Coal-Fired Power Plant Equipped with Selective Catalytic Reduction, Electrostatic Precipitator, and Wet Flue Gas Desulfurization. Energy & Fuels, 2017, 31, 12383-12389.	5.1	29
23	Enhancement of Mercury Removal Efficiency by Activated Carbon Treated with Nonthermal Plasma in Different Atmospheres. Energy & Fuels, 2017, 31, 13852-13858.	5.1	29
24	Detrimental effects of SO2 on gaseous mercury(II) adsorption and retention by CaO-based sorbent traps: Competition and heterogeneous reduction. Journal of Hazardous Materials, 2020, 387, 121679.	12.4	29
25	Adsorption equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash. Korean Journal of Chemical Engineering, 2015, 32, 1405-1413.	2.7	28
26	Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring. International Journal of Coal Geology, 2017, 170, 19-27.	5.0	27
27	Investigation of mercury adsorption and cyclic mercury retention over MnO \hat{I}^3 -Al2O3 sorbent. Chemosphere, 2018, 202, 358-365.	8.2	27
28	Study of Mercury-Removal Performance of Mechanical–Chemical-Brominated Coal-Fired Fly Ash. Energy & Fuels, 2019, 33, 6670-6677.	5.1	27
29	Combined experimental and theoretical studies on adsorption mechanisms of gaseous mercury(II) by calcium-based sorbents: The effect of unsaturated oxygen sites. Science of the Total Environment, 2019, 656, 937-945.	8.0	27
30	Influence of Different Sulfur Forms on Gas-Phase Mercury Removal by SO ₂ -Impregnated Porous Carbons. Energy & Fuels, 2020, 34, 2064-2073.	5.1	27
31	Studies on Mercury Adsorption Species and Equilibrium on Activated Carbon Surface. Energy & Fuels, 2017, 31, 14211-14218.	5.1	25
32	Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent. Chemosphere, 2021, 274, 129637.	8.2	25
33	Mercury emissions monitoring in a coal-fired power plant by using the EPA method 30B based on a calcium-based sorbent trap. Fuel, 2018, 221, 171-178.	6.4	24
34	Gaseous Elemental Mercury Removal by Magnetic Fe–Mn–Ce Sorbent in Simulated Flue Gas. Energy & Fuels, 2018, 32, 12780-12786.	5.1	24
35	Simultaneous Removal of Elemental Mercury and NO from Simulated Flue Gas at Low Temperatures over Mn–V–W/TiO ₂ Catalysts. Energy & Fuels, 2019, 33, 8896-8906.	5.1	24
36	Regenerable Ce–Mn/TiO ₂ Catalytic Sorbent for Mercury Removal with High Resistance to SO ₂ . Energy & Fuels, 2019, 33, 8835-8842.	5.1	22

#	Article	IF	CITATIONS
37	Effect of Mechanical–Chemical Modification Process on Mercury Removal of Bromine Modified Fly Ash. Energy & Fuels, 2020, 34, 9829-9839.	5.1	22
38	Experimental characterization of enhanced SNCR process with carbonaceous gas additives. Chemosphere, 2017, 177, 149-156.	8.2	20
39	Synthetic calcium-based adsorbents for gaseous mercury(II) adsorption from flue gas and study on their mercury adsorption mechanism. Fuel, 2018, 234, 384-391.	6.4	20
40	Regeneration Characteristics of Elemental Sulfur-Modified Activated Carbon for Mercury Removal. Energy & Fuels, 2021, 35, 9497-9508.	5.1	19
41	Mechanochemical bromination of unburned carbon in fly ash and its mercury removal mechanism: DFT study. Journal of Hazardous Materials, 2022, 423, 127198.	12.4	19
42	Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors. Korean Journal of Chemical Engineering, 2007, 24, 175-180.	2.7	18
43	Activated Carbon for Capturing Hg in Flue Gas under O ₂ /CO ₂ Combustion Conditions. Part 1: Experimental and Kinetic Study. Energy & Fuels, 2018, 32, 1900-1906.	5.1	18
44	Predictions of Hg ⁰ and HgCl ₂ Adsorption Properties in UiO-66 from Flue Gas Using Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 5972-5979.	3.1	18
45	Study on Preparation and Mercury Adsorption Characteristics of Columnar Sulfur-Impregnated Activated Petroleum Coke. Energy & Fuels, 2020, 34, 10740-10751.	5.1	17
46	Prediction of Synergic Effects of H ₂ 0, SO ₂ , and HCl on Mercury and Arsenic Transformation under Oxy-Fuel Combustion Conditions. Energy & Fuels, 2016, 30, 8463-8468.	5.1	16
47	Effects of NH ₄ Br additive on mercury transformation and removal during CFB coal combustion. Journal of Chemical Technology and Biotechnology, 2017, 92, 391-398.	3.2	16
48	From scrap polystyrene foam to efficient demercurizer: In-situ synthesis of Fe-embedded hyper-cross-linked polymers. Applied Catalysis B: Environmental, 2021, 285, 119791.	20.2	15
49	Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China. Journal of Environmental Sciences, 2023, 123, 367-386.	6.1	15
50	Synergistic effect between H ₂ O and SO ₂ on mercury removal by activated carbon in O ₂ /CO ₂ conditions. Journal of Chemical Technology and Biotechnology, 2019, 94, 1195-1201.	3.2	13
51	Impact of Nonoxidized Sulfur Species on Elemental Mercury Removal by SO ₂ Activated Petroleum Cokes. Energy & Fuels, 2020, 34, 14388-14399.	5.1	13
52	Effects of different coals on mercury distribution in a 6ÂkWth circulating fluidized bed under air and O2/CO2 atmosphere via experiment and thermodynamic equilibrium calculation. Journal of the Energy Institute, 2017, 90, 229-238.	5.3	12
53	Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion. Journal of the Energy Institute, 2018, 91, 214-221.	5.3	12
54	Study on Elemental Mercury Oxidation by Non-thermal Plasma with Calcium Chloride Enhancement. Plasma Chemistry and Plasma Processing, 2018, 38, 573-586.	2.4	11

#	Article	IF	CITATIONS
55	Effects of SO ₂ on Hg Adsorption by Activated Carbon in O ₂ /CO ₂ Conditions. Part 1: Experimental and Kinetic Study. Energy & Fuels, 2018, 32, 10773-10778.	5.1	11
56	Studies on Mercury Adsorption Species and Desorption Activation Energy on Activated Carbon under Oxy Combustion. Energy & amp; Fuels, 2018, 32, 10754-10759.	5.1	11
57	Flue Gas Hg ⁰ Removal by FeCl ₃ -Impregnated LTA and MFI Zeolites: Influences of Topology and Cation Sites. Energy & Fuels, 2020, 34, 9903-9913.	5.1	11
58	Experimental Study on Mercury Oxidation in a Fluidized Bed under O ₂ /CO ₂ and O ₂ /N ₂ Atmospheres. Energy & Fuels, 2016, 30, 5065-5070.	5.1	10
59	Removal of Elemental Mercury from Simulated Flue Gas by Combining Non-thermal Plasma with Calcium Oxide. Plasma Chemistry and Plasma Processing, 2016, 36, 471-485.	2.4	10
60	The effect of organic solvent thermal treatment on the physicochemical properties of lignite. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 724-733.	1.5	9
61	Continuous Generation of HgCl ₂ by DBD Nonthermal Plasma. Part I: Influences of the DBD Reactor Structure and Operational Parameters. Industrial & Engineering Chemistry Research, 2020, 59, 13396-13405.	3.7	9
62	Effect of flue gas components on Hg ⁰ oxidation and adsorption by modified walnut shell coke in O ₂ /CO ₂ atmosphere. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2423.	1.5	9
63	Single-atom iron on penta-graphene assisted with non-bonding interaction as superior demercurizer: A DFT exploration. Applied Surface Science, 2022, 590, 153060.	6.1	8
64	Activated Carbon for Capturing Hg in Flue Gas under O ₂ /CO ₂ Combustion Conditions. Part 2: Modeling Study and Adsorption Mechanism. Energy & Fuels, 2018, 32, 1907-1913.	5.1	7
65	Performance and reaction mechanism for lowâ€ŧemperature NO _{<i>x</i>} catalytic synergistic Hg ⁰ oxidation of catalytic polyphenylene sulfide filter materials. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2403.	1.5	7
66	Reduction of HgCl2 to Hg0 in flue gas at high temperature. Part â: Influences of oxidative species. Fuel, 2022, 324, 124417.	6.4	7
67	Influence of sewage sludge on the rheological properties of petroleum coke–water slurry. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 453-460.	1.5	6
68	Effect of a Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash. Part 1. Ball Milling. Industrial & Engineering Chemistry Research, 2021, 60, 14737-14746.	3.7	6
69	Mercury speciation and emission from the coalâ€fired power plant filled with flue gas desulfurization equipment. Canadian Journal of Chemical Engineering, 2010, 88, 867-873.	1.7	5
70	Influence of Feâ€modified Mn–Ce–Fe–Co–O x /P84 catalytic filter materials for lowâ€ŧemperature NO removal synergistic Hg 0 oxidation. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2677.	1.5	5
71	Experimental Study on the Mercury Removal of a H ₂ S-Modified Fe ₂ O ₃ Adsorbent. Industrial & Engineering Chemistry Research, 2021, 60, 17429-17438.	3.7	5
72	Reduction of HgCl2 to Hg0 in flue gas at high temperature. Part â;: Acid remover. Fuel, 2022, 324, 124412.	6.4	5

#	Article	IF	CITATIONS
73	Local resistance characteristics of highly concentrated coal-water slurry flow through fittings. Korean Journal of Chemical Engineering, 2009, 26, 569-575.	2.7	4
74	Effect of Surface Chemistry and Structure of Sludge Particles on Their Co-slurrying Ability with Petroleum Coke. International Journal of Chemical Reactor Engineering, 2014, 12, 429-439.	1.1	4
75	The Migration and Transformation of Heavy Metals in Sewage Sludge during Hydrothermal Carbonization Combined with Combustion. BioMed Research International, 2018, 2018, 1-11.	1.9	4
76	Emission and Migration Characteristics of Mercury in a 0.3 MWth CFB Boiler with Ammonium Bromide-Modified Rice Husk Char Injection into Flue. Energy & Fuels, 2019, 33, 7578-7586.	5.1	4
77	Influence of calcination temperature on SO ₂ resistance of Mnâ€Feâ€6n/TiO ₂ catalysts at lowâ€temperature. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	1.5	4
78	Effect of the Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash, Part 2: Sulfur Additive. Industrial & Engineering Chemistry Research, 2021, 60, 15115-15124.	3.7	3
79	Predicting the Liquid Film Thickness and Droplet–Gas Flow in Effervescent Atomization: Influence of Operating Conditions and Fluid Viscosity. International Journal of Chemical Reactor Engineering, 2013, 11, 393-405.	1.1	2
80	Effects of the Types and Addition Amounts of Sludge on the True Rheological Properties of Petroleum Coke Slurry Flowing in Pipelines. International Journal of Chemical Reactor Engineering, 2015, 13, 311-322.	1.1	2
81	Effect of the Amount of Sludge on Physicochemical Properties and Chemical Structure of Lowâ€rank Coal under Hydrothermal Conditions. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 755-764.	1.5	2
82	Removal of Mercury from Simulated Natural Gas by SO ₂ Activated Petroleum Coke. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012126.	0.6	2
83	Continuous Generation of HgCl2 by Dielectric Barrier Discharge Nonthermal Plasma. Part II: Influences of the Cl Source. Industrial & Engineering Chemistry Research, 2020, 59, 13406-13413.	3.7	2
84	Effect of flue gas components on the NO removal and element mercury oxidation performance of Mn-modified low-temperature catalyst. International Journal of Chemical Reactor Engineering, 2021, 19, 1031-1043.	1.1	2
85	10.2478/s11814-009-0190-у. , 2011, 26, 1144.		0