
OlÃ-via Salomé G P Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709453/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of monometallic macrostructured catalysts for bromate reduction in a continuous catalytic system. Environmental Technology (United Kingdom), 2023, 44, 3834-3849.	2.2	2
2	Nano- and macro-structured cerium oxide – Carbon nanotubes composites for the catalytic ozonation of organic pollutants in water. Catalysis Today, 2022, 384-386, 187-196.	4.4	7
3	O3 based advanced oxidation for ibuprofen degradation. Chinese Journal of Chemical Engineering, 2022, 42, 277-284.	3.5	7
4	Copper Supported on Mesoporous Structured Catalysts for NO Reduction. Catalysts, 2022, 12, 170.	3.5	2
5	Performance of Graphene/Polydimethylsiloxane Surfaces against S. aureus and P. aeruginosa Single- and Dual-Species Biofilms. Nanomaterials, 2022, 12, 355.	4.1	7
6	Palladium Impregnation on Electrospun Carbon Fibers for Catalytic Reduction of Bromate in Water. Processes, 2022, 10, 458.	2.8	1
7	Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis. Energies, 2022, 15, 1821.	3.1	9
8	Engineering of Nanostructured Carbon Catalyst Supports for the Continuous Reduction of Bromate in Drinking Water. Journal of Carbon Research, 2022, 8, 21.	2.7	3
9	In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS. Applied Catalysis B: Environmental, 2022, 312, 121376.	20.2	20
10	Understanding the importance of Nâ^'doping for CNT-supported Ni catalysts for CO2 methanation. Carbon, 2022, 195, 35-43.	10.3	15
11	Novel Heterogeneous Catalysts for Advanced Oxidation Processes (AOPs). Catalysts, 2022, 12, 498.	3.5	2
12	Fe(III)-exchanged zeolites as efficient electrocatalysts for Fenton-like oxidation of dyes in aqueous phase. Journal of Environmental Chemical Engineering, 2022, 10, 107891.	6.7	17
13	New Peptide Functionalized Nanostructured Lipid Carriers with CNS Drugs and Evaluation Anti-proliferative Activity. International Journal of Molecular Sciences, 2022, 23, 7109.	4.1	3
14	Optimization of the preparation conditions of cordierite honeycomb monoliths washcoated with cryptomelane-type manganese oxide for VOC oxidation. Environmental Technology (United Kingdom), 2021, 42, 2504-2515.	2.2	8
15	Influence of preparation methods on the activity of macro-structured ball-milled MWCNT catalysts in the ozonation of organic pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 104578.	6.7	6
16	Electrochemical oxidation of diclofenac on CNT and M/CNT modified electrodes. New Journal of Chemistry, 2021, 45, 12622-12633.	2.8	7
17	From Nano- to Macrostructured Carbon Catalysts for Water and Wastewater Treatment. , 2021, , 273-308.		0
18	Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. International Journal of Molecular Sciences, 2021, 22, 2932.	4.1	9

#	Article	IF	CITATIONS
19	Nanoporous carbons prepared from argan nutshells as potential removal agents of diclofenac and paroxetine. Journal of Molecular Liquids, 2021, 326, 115368.	4.9	20
20	Optimizing CNT Loading in Antimicrobial Composites for Urinary Tract Application. Applied Sciences (Switzerland), 2021, 11, 4038.	2.5	15
21	Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts, 2021, 11, 578.	3.5	7
22	Feasibility of using magnetic nanoparticles in water disinfection. Journal of Environmental Management, 2021, 288, 112410.	7.8	7
23	Influence of organic matter formed during oxidative processes in the catalytic reduction of nitrate. Journal of Environmental Chemical Engineering, 2021, 9, 105545.	6.7	10
24	Highly N2-Selective Activated Carbon-Supported Pt-In Catalysts for the Reduction of Nitrites in Water. Frontiers in Chemistry, 2021, 9, 733881.	3.6	6
25	Degradation and mineralization of oxalic acid using catalytic wet oxidation over carbon coated ceramic monoliths. Journal of Environmental Chemical Engineering, 2021, 9, 105369.	6.7	9
26	New Opportunity for Carbonâ€Supported Niâ€based Electrocatalysts: Gasâ€Phase CO ₂ Methanation. ChemCatChem, 2021, 13, 4770-4779.	3.7	7
27	Production of ethyl levulinate fuel bioadditive from 5-hydroxymethylfurfural over sulfonic acid functionalized biochar catalysts. Fuel, 2021, 303, 121227.	6.4	28
28	Towards the efficient reduction of perchlorate in water using rhenium-noble metal bimetallic catalysts supported on activated carbon. Journal of Environmental Chemical Engineering, 2021, 9, 106397.	6.7	5
29	Metal-zeolite catalysts for the removal of pharmaceutical pollutants in water by catalytic ozonation. Journal of Environmental Chemical Engineering, 2021, 9, 106458.	6.7	8
30	Fenton-Type Bimetallic Catalysts for Degradation of Dyes in Aqueous Solutions. Catalysts, 2021, 11, 32.	3.5	8
31	Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends, 2021, 5, 100137.	3.0	7
32	Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials, 2021, 11, 3016.	4.1	11
33	Combined experimental and theoretical study of acetylene semi-hydrogenation over Pd/Al2O3. International Journal of Hydrogen Energy, 2020, 45, 1283-1296.	7.1	25
34	Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes. Catalysis Today, 2020, 357, 322-331.	4.4	15
35	Effect of ball milling on the catalytic activity of cryptomelane for VOC oxidation. Environmental Technology (United Kingdom), 2020, 41, 117-130.	2.2	14
36	Preparation of ceramic and metallic monoliths coated with cryptomelane as catalysts for VOC abatement. Chemical Engineering Journal, 2020, 382, 122923.	12.7	23

OLÂVIA SALOMé G P SOARES

#	Article	IF	CITATIONS
37	Catalytic Transfer Hydrogenation of Furfural over Co ₃ O ₄ â°Al ₂ O ₃ Hydrotalciteâ€derived Catalyst. ChemCatChem, 2020, 12, 1467-1475.	3.7	31
38	Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Today, 2020, 357, 64-73.	4.4	13
39	Application of magnetic nanoparticles for water purification. Environmental Advances, 2020, 2, 100010.	4.8	31
40	4-Nitrobenzaldehyde removal by catalytic ozonation in the presence of CNT. Journal of Water Process Engineering, 2020, 38, 101573.	5.6	13
41	Multi-Walled Carbon Nanotubes Enhance Methanogenesis from Diverse Organic Compounds in Anaerobic Sludge and River Sediments. Applied Sciences (Switzerland), 2020, 10, 8184.	2.5	8
42	Carbon Nanotube/Poly(dimethylsiloxane) Composite Materials to Reduce Bacterial Adhesion. Antibiotics, 2020, 9, 434.	3.7	20
43	The role of surface properties in CO ₂ methanation over carbon-supported Ni catalysts and their promotion by Fe. Catalysis Science and Technology, 2020, 10, 7217-7225.	4.1	21
44	Tailoring Carbon Nanotubes to Enhance their Efficiency as Electron Shuttle on the Biological Removal of Acid Orange 10 Under Anaerobic Conditions. Nanomaterials, 2020, 10, 2496.	4.1	10
45	Nitrate Catalytic Reduction over Bimetallic Catalysts: Catalyst Optimization. Journal of Carbon Research, 2020, 6, 78.	2.7	11
46	Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis. Processes, 2020, 8, 1329.	2.8	5
47	Nanostructured Layers of Mechanically Processed Multiwalled Carbon Nanotubes for Catalytic Ozonation of Organic Pollutants. ACS Applied Nano Materials, 2020, 3, 5271-5284.	5.0	16
48	Selective formic acid dehydrogenation at low temperature over a RuO ₂ /COF pre-catalyst synthesized on the gram scale. Catalysis Science and Technology, 2020, 10, 1991-1995.	4.1	25
49	The Effect of Light Wavelength on CO2 Capture, Biomass Production and Nutrient Uptake by Green Microalgae: A Step Forward on Process Integration and Optimisation. Energies, 2020, 13, 333.	3.1	28
50	Binuclear furanyl-azine metal complexes encapsulated in NaY zeolite as efficiently heterogeneous catalysts for phenol hydroxylation. Journal of Molecular Structure, 2020, 1206, 127687.	3.6	5
51	The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process. Applied Surface Science, 2020, 511, 145467.	6.1	22
52	Catalytic Advanced Oxidation Processes for Sulfamethoxazole Degradation. Applied Sciences (Switzerland), 2019, 9, 2652.	2.5	24
53	Magnetic Nanoparticles for Photocatalytic Ozonation of Organic Pollutants. Catalysts, 2019, 9, 703.	3.5	10
54	Photocatalytic performance of N-doped TiO2nano-SiO2-HY nanocomposites immobilized over cotton fabrics. Journal of Materials Research and Technology, 2019, 8, 1933-1943.	5.8	34

OLÃVIA SALOMé G P SOARES

#	Article	IF	CITATIONS
55	Mechanothermal Approach for N-, S-, P-, and B-Doping of Carbon Nanotubes: Methodology and Catalytic Performance in Wet Air Oxidation. Journal of Carbon Research, 2019, 5, 30.	2.7	13
56	Heterogeneous Fenton-Like Degradation of p-Nitrophenol over Tailored Carbon-Based Materials. Catalysts, 2019, 9, 258.	3.5	28
57	Catalytic bromate reduction in water: Influence of carbon support. Journal of Environmental Chemical Engineering, 2019, 7, 103015.	6.7	20
58	Encapsulation and characterisation of cationic benzo[<i>a</i>]phenoxazines in zeolite HY. New Journal of Chemistry, 2019, 43, 15785-15792.	2.8	7
59	Incorporation of carbon nanotubes in polydimethylsiloxane to controlEscherichia coliadhesion. Polymer Composites, 2019, 40, E1697-E1704.	4.6	18
60	Microbial conversion of oily wastes to methane: Effect of ferric nanomaterials. , 2019, , 339-345.		1
61	Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine. Electrochimica Acta, 2018, 267, 122-132.	5.2	20
62	Ethyl and butyl acetate oxidation over manganese oxides. Chinese Journal of Catalysis, 2018, 39, 27-36.	14.0	9
63	Modification of microfluidic paper-based devices with dye nanomaterials obtained by encapsulation of compounds in Y and ZSM5 zeolites. Sensors and Actuators B: Chemical, 2018, 261, 66-74.	7.8	13
64	Oxygen surface groups analysis of carbonaceous samples pyrolysed at low temperature. Carbon, 2018, 134, 255-263.	10.3	48
65	Conversion of hemicellulose-derived pentoses over noble metal supported on 1D multiwalled carbon nanotubes. Applied Catalysis B: Environmental, 2018, 232, 101-107.	20.2	34
66	Zero-valent iron supported on nitrogen-doped carbon xerogel as catalysts for the oxidation of phenol by fenton-like system. Environmental Technology (United Kingdom), 2018, 39, 2951-2958.	2.2	19
67	Catalytic and Photocatalytic Nitrate Reduction Over Pd-Cu Loaded Over Hybrid Materials of Multi-Walled Carbon Nanotubes and TiO2. Frontiers in Chemistry, 2018, 6, 632.	3.6	21
68	Study of the Electroreactivity of Amoxicillin on Carbon Nanotubeâ€ 5 upported Metal Electrodes. ChemCatChem, 2018, 10, 4900-4909.	3.7	7
69	Catalytic reduction of bromate over catalysts based on Pd nanoparticles synthesized via water-in-oil microemulsion. Applied Catalysis B: Environmental, 2018, 237, 206-213.	20.2	19
70	Sulfamethoxazole degradation by combination of advanced oxidation processes. Journal of Environmental Chemical Engineering, 2018, 6, 4054-4060.	6.7	41
71	Oxidation of Volatile Organic Compounds by Highly Efficient Metal Zeolite Catalysts. ChemCatChem, 2018, 10, 3754-3760.	3.7	11
72	Metal-Free Catalytic Wet Oxidation: From Powder to Structured Catalyst Using N-Doped Carbon Nanotubes. Topics in Catalysis, 2018, 61, 1957-1966.	2.8	7

#	Article	IF	CITATIONS
73	Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Advances, 2017, 7, 14290-14301.	3.6	83
74	Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides. Journal of Colloid and Interface Science, 2017, 496, 141-149.	9.4	64
75	Synthesis, characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10. Applied Catalysis B: Environmental, 2017, 212, 175-184.	20.2	34
76	Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 60-69.	3.9	74
77	Bifunctionality of the pyrone functional group in oxidized carbon nanotubes towards oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 1868-1879.	4.1	16
78	Synthesis of TiO2-Carbon Nanotubes through ball-milling method for mineralization of oxamic acid (OMA) by photocatalytic ozonation. Journal of Environmental Chemical Engineering, 2017, 5, 5599-5607.	6.7	23
79	Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Applied Catalysis A: General, 2017, 548, 62-70.	4.3	39
80	p-Nitrophenol degradation by heterogeneous Fenton's oxidation over activated carbon-based catalysts. Applied Catalysis B: Environmental, 2017, 219, 109-122.	20.2	99
81	Sorption of copper, nickel and cadmium on bone char. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 618-627.	1.1	15
82	Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chemical Engineering Journal, 2017, 309, 197-205.	12.7	41
83	Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorganica Chimica Acta, 2017, 455, 473-482.	2.4	33
84	Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules, 2016, 21, 644.	3.8	29
85	Tuning CNT Properties for Metal-Free Environmental Catalytic Applications. Journal of Carbon Research, 2016, 2, 17.	2.7	17
86	Oxidation of mixtures of ethyl acetate and butyl acetate over cryptomelane and the effect of water vapor. Environmental Progress and Sustainable Energy, 2016, 35, 1324-1329.	2.3	12
87	Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192, 296-303.	20.2	90
88	Naphthopyran-Based Silica Nanoparticles as New High-Performance Photoresponsive Materials. ACS Applied Materials & Interfaces, 2016, 8, 7221-7231.	8.0	34
89	Nâ€doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Medium: Synergistic Relationship between Pyridinic and Quaternary Nitrogen. ChemistrySelect, 2016, 1, 2522-2530.	1.5	36
90	Catalytic wet oxidation of organic compounds over N-doped carbon nanotubes in batch and continuous operation. Applied Catalysis B: Environmental, 2016, 199, 361-371.	20.2	27

OLÂVIA SALOMé G P SOARES

#	Article	IF	CITATIONS
91	Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 2016, 291, 199-205.	12.7	27
92	Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249, 192-198.	4.4	62
93	Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catalysis Today, 2015, 249, 213-219.	4.4	31
94	Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catalysis Today, 2015, 249, 199-203.	4.4	48
95	Mono and bimetallic NaY catalysts with high performance in nitrate reduction in water. Chemical Engineering Journal, 2015, 281, 411-417.	12.7	43
96	Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chemistry, 2015, 17, 4247-4254.	9.0	44
97	Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502, 71-77.	4.3	12
98	Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon, 2015, 91, 114-121.	10.3	111
99	Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249, 176-183.	4.4	34
100	Green synthesis of polypyrrole-supported metal catalysts: application to nitrate removal in water. RSC Advances, 2015, 5, 32706-32713.	3.6	14
101	Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chemical Engineering Journal, 2015, 263, 119-126.	12.7	54
102	Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol. Catalysis Today, 2015, 240, 73-79.	4.4	40
103	Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chemical Engineering Journal, 2015, 260, 309-315.	12.7	32
104	Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chemical Engineering Journal, 2014, 251, 123-130.	12.7	88
105	Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154-155, 329-338.	20.2	74
106	Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. Journal of Catalysis, 2014, 309, 58-65.	6.2	83
107	The electrochemical mineralization of oxalic and oxamic acids using modified electrodes based on carbon nanotubes. Chemical Engineering Journal, 2013, 228, 374-380.	12.7	12
108	Silica nanoparticles functionalized with a thermochromic dye for textile applications. Journal of Materials Science, 2013, 48, 5085-5092.	3.7	32

#	Article	IF	CITATIONS
109	Promotional effect of Cu on the structure and chloronitrobenzene hydrogenation performance of carbon nanotube and activated carbon supported Pt catalysts. Applied Catalysis A: General, 2013, 464-465, 28-34.	4.3	24
110	Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. Environmental Technology (United Kingdom), 2012, 33, 2353-2358.	2.2	37
111	Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. Journal of Catalysis, 2012, 293, 165-174.	6.2	165
112	Kinetic Modeling of Nitrate Reduction Catalyzed by Pd–Cu Supported on Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2012, 51, 4854-4860.	3.7	20
113	Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate. Applied Catalysis B: Environmental, 2012, 117-118, 406-413.	20.2	46
114	Effect of support and pre-treatment conditions on Pt–Sn catalysts: Application to nitrate reduction in water. Journal of Colloid and Interface Science, 2012, 369, 294-301.	9.4	22
115	Electrocatalytic oxidation of oxalic and oxamic acids in aqueous media at carbon nanotube modified electrodes. Electrochimica Acta, 2012, 60, 278-286.	5.2	17
116	Nitrate reduction in water catalysed by Pd–Cu on different supports. Desalination, 2011, 279, 367-374.	8.2	81
117	Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution. Applied Catalysis B: Environmental, 2011, 102, 424-432.	20.2	58
118	Nitrate Reduction Catalyzed by Pd–Cu and Pt–Cu Supported on Different Carbon Materials. Catalysis Letters, 2010, 139, 97-104.	2.6	48
119	Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures. Chemical Engineering Journal, 2010, 165, 78-88.	12.7	87
120	Pdâ^'Cu and Ptâ^'Cu Catalysts Supported on Carbon Nanotubes for Nitrate Reduction in Water. Industrial & Engineering Chemistry Research, 2010, 49, 7183-7192.	3.7	68
121	Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 2009, 91, 441-448.	20.2	102
122	Activated Carbon Supported Metal Catalysts for Nitrate and Nitrite Reduction in Water. Catalysis Letters, 2008, 126, 253-260.	2.6	107
123	Ozonation of Textile Effluents and Dye Solutions in the Presence of Activated Carbon under Continuous Operation. Separation Science and Technology, 2007, 42, 1477-1492.	2.5	23
124	Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 2006, 137, 1664-1673.	12.4	108
125	Performance of self-cleaning cotton textiles coated with TiO2, TiO2-SiO2 and TiO2-SiO2-HY in removing Rhodamine B and Reactive Red 120 dyes from aqueous solutions. , 0, 223, 447-455.		5