
Dick Vreugdenhil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant Journal, 1996, 9, 745-753.	2.8	764
2	NATURALLY OCCURRING GENETIC VARIATION INARABIDOPSIS THALIANA. Annual Review of Plant Biology, 2004, 55, 141-172.	8.6	610
3	What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?. Plant Cell, 2009, 21, 1877-1896.	3.1	401
4	Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 2007, 175, 891-905.	1.2	214
5	Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis. Plant Physiology, 2000, 124, 1595-1604.	2.3	205
6	Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 337-348.	3.1	178
7	An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiologia Plantarum, 1989, 75, 525-531.	2.6	167
8	Cell division and cell enlargement during potato tuber formation. Journal of Experimental Botany, 1998, 49, 573-582.	2.4	144
9	Genetic architecture of plant stress resistance: multiâ€ŧrait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	3.5	144
10	Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2006, 126, 407-417.	2.6	121
11	Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta, 1997, 202, 220-226.	1.6	116
12	A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nature Communications, 2014, 5, 4549.	5.8	83
13	Genome-Wide Association Mapping of Fertility Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 1857-1874.	3.1	82
14	Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. Journal of Experimental Botany, 2015, 66, 5567-5580.	2.4	80
15	Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. Plant Physiology, 2016, 170, 2187-2203.	2.3	77
16	Genomeâ€wide association mapping of timeâ€dependent growth responses to moderate drought stress in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 88-102.	2.8	67
17	Is dormancy breaking of potato tubers the reverse of tuber initiation?. Potato Research, 2000, 43, 347-369.	1.2	62
18	Uptake of mannitol from the media by in vitro grown plants. Plant Cell, Tissue and Organ Culture, 1996, 45, 103-107.	1.2	61

DICK VREUGDENHIL

#	Article	IF	CITATIONS
19	Gibberellins and tuberization in potato. Potato Research, 1999, 42, 471-481.	1.2	59
20	Occurrence of hydroxylated jasmonic acids in leaflets of Solanum demissum plants grown under long- and short-day conditions. Physiologia Plantarum, 1993, 88, 647-653.	2.6	56
21	Expression of auxin synthesis gene <i>tms1</i> under control of tuberâ€specific promoter enhances potato tuberization <i>in vitro</i> . Journal of Integrative Plant Biology, 2015, 57, 734-744.	4.1	51
22	Measurements of pH, sucrose and potassium ions in the phloem sap of castor bean (Ricinus communis) plants. Physiologia Plantarum, 1989, 77, 385-388.	2.6	31
23	Cell division and cell enlargement during potato tuber formation. Journal of Experimental Botany, 1998, 49, 573-582.	2.4	31
24	Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell, Tissue and Organ Culture, 1998, 53, 197-204.	1.2	30
25	Physiological and genetic control of tuber formation. Potato Research, 1999, 42, 313-331.	1.2	30
26	Tuber morphology and starch accumulation are independent phenomena: Evidence from ipt -transgenic potato lines. Physiologia Plantarum, 2000, 108, 435-443.	2.6	29
27	Changes in the microtubular cytoskeleton precede in vitro tuber formation in potato. Protoplasma, 1996, 191, 46-54.	1.0	27
28	Comparing carbohydrate status during norway spruce seed development and somatic embryo formation. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 24-28.	0.9	26
29	GWA Mapping of Anthocyanin Accumulation Reveals Balancing Selection of MYB90 in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0143212.	1.1	26
30	Phytochrome A Protects Tomato Plants From Injuries Induced by Continuous Light. Frontiers in Plant Science, 2019, 10, 19.	1.7	25
31	On the induction of injury in tomato under continuous light: circadian asynchrony as the main triggering factor. Functional Plant Biology, 2017, 44, 597.	1.1	21
32	Sucrose and Starch Content Negatively Correlates with PSII Maximum Quantum Efficiency in Tomato (Solanum lycopersicum) Exposed to Abnormal Light/Dark Cycles and Continuous Light. Plant and Cell Physiology, 2017, 58, 1339-1349.	1.5	21
33	Natural variation of hormone levels in <i>Arabidopsis</i> roots and correlations with complex root architecture. Journal of Integrative Plant Biology, 2018, 60, 292-309.	4.1	21
34	Comparing potato tuberization and sprouting: Opposite phenomena?. American Journal of Potato Research, 2004, 81, 275-280.	0.5	17
35	Simultaneous analysis of a series of phosphorylated sugars in small tissue samples by anion exchange chromatography and pulsed amperometric detection. Phytochemical Analysis, 1999, 10, 107-112.	1.2	15
36	Antisense suppression of a potato alpha-SNAP homologue leads to alterations in cellular development and assimilate distribution. Plant Molecular Biology, 2000, 43, 473-482.	2.0	12

DICK VREUGDENHIL

#	Article	IF	CITATIONS
37	The Canon of Potato Science: 39. Dormancy. Potato Research, 2007, 50, 371-373.	1.2	11
38	Gene expression and physiological responses associated to stomatal functioning in Rosa×hybrida grown at high relative air humidity. Plant Science, 2016, 253, 154-163.	1.7	8
39	Uptake of 13 C-glucose by cell suspensions of carrot (Daucus carota) measured by in vivo NMR: Cycling of triose-, pentose- and hexose-phosphates. Physiologia Plantarum, 2000, 108, 125-133.	2.6	5
40	Mapping loci for chlorosis associated with chlorophyll b deficiency in potato. Euphytica, 2008, 162, 99-107.	0.6	3
41	Quantitative trait loci analysis of hormone levels in Arabidopsis roots. PLoS ONE, 2019, 14, e0219008.	1.1	3