
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modular approach for representing and executing clinical guidelines. Artificial Intelligence in Medicine, 2001, 23, 249-276.	6.5	96
2	A spectrum of definitions for temporal model-based diagnosis. Artificial Intelligence, 1998, 102, 39-79.	5.8	79
3	Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artificial Intelligence in Medicine, 2006, 38, 171-195.	6.5	69
4	Reconciling point-based and interval-based semantics in temporal relational databases: a treatment of the telic/atelic distinction. IEEE Transactions on Knowledge and Data Engineering, 2004, 16, 540-551.	5.7	54
5	Adopting model checking techniques for clinical guidelines verification. Artificial Intelligence in Medicine, 2010, 48, 1-19.	6.5	44
6	Integrating calendar dates and qualitative temporal constraints in the treatment of periodic events. IEEE Transactions on Knowledge and Data Engineering, 1997, 9, 763-783.	5.7	42
7	On the computational complexity of querying bounds on differences constraints. Artificial Intelligence, 1995, 74, 367-379.	5.8	35
8	Symbolic user-defined periodicity in temporal relational databases. IEEE Transactions on Knowledge and Data Engineering, 2003, 15, 489-509.	5.7	33
9	TIME, ACTION-TYPES, AND CAUSATION: AN INTEGRATED ANALYSIS. Computational Intelligence, 1995, 11, 529-552.	3.2	30
10	Qualitative and quantitative temporal constraints and relational databases: theory, architecture, and applications. IEEE Transactions on Knowledge and Data Engineering, 1999, 11, 948-968.	5.7	29
11	Temporal detection and analysis of guideline interactions. Artificial Intelligence in Medicine, 2017, 76, 40-62.	6.5	29
12	Conformance Checking of Executed Clinical Guidelines in Presence of Basic Medical Knowledge. Lecture Notes in Business Information Processing, 2012, , 200-211.	1.0	22
13	Extending temporal databases to deal with telic/atelic medical data. Artificial Intelligence in Medicine, 2007, 39, 113-126.	6.5	20
14	Integrated Temporal Reasoning with Periodic Events. Computational Intelligence, 2000, 16, 210-256.	3.2	18
15	Valid-Time Indeterminacy in Temporal Relational Databases: Semantics and Representations. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 2880-2894.	5.7	18
16	An ontological knowledge and multiple abstraction level decision support system in healthcare. Decision Analytics, 2014, 1, .	1.4	18
17	META-GLARE: A meta-system for defining your own computer interpretable guideline system—Architecture and acquisition. Artificial Intelligence in Medicine, 2016, 72, 22-41.	6.5	18
18	Efficient Processing of Queries and Assertions about Qualitative and Quantitative Temporal Constraints. Computational Intelligence, 1999, 15, 442-465.	3.2	17

#	Article	IF	CITATIONS
19	Temporal Extensions to Defeasible Logic. , 2007, , 476-485.		16
20	Supporting Knowledge-Based Decision Making in the Medical Context. International Journal of Knowledge-Based Organizations, 2011, 1, 42-60.	0.4	16
21	Exploiting decision theory concepts within clinical guideline systems: Toward a general approach. International Journal of Intelligent Systems, 2006, 21, 585-599.	5.7	14
22	An Italian Multicenter Study for Application of a Diagnostic Algorithm in Autoantibody Testing. Annals of the New York Academy of Sciences, 2009, 1173, 124-129.	3.8	14
23	Supporting a distributed execution of clinical guidelines. Computer Methods and Programs in Biomedicine, 2013, 112, 200-210.	4.7	14
24	Extending BCDM to Cope with Proposals and Evaluations of Updates. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 556-570.	5.7	14
25	Managing proposals and evaluations of updates to medical knowledge: Theory and applications. Journal of Biomedical Informatics, 2013, 46, 363-376.	4.3	13
26	Temporal Conformance Analysis and Explanation of Clinical Guidelines Execution: An Answer Set Programming Approach. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2567-2580.	5.7	13
27	GLARE-SSCPM: An Intelligent System to Support the Treatment of Comorbid Patients. IEEE Intelligent Systems, 2018, 33, 37-46.	4.0	13
28	A Hybrid Approach to Clinical Guideline and to Basic Medical Knowledge Conformance. Lecture Notes in Computer Science, 2009, , 91-95.	1.3	13
29	Towards a causal ontology coping with the temporal constraints between causes and effects. International Journal of Human Computer Studies, 1995, 43, 847-863.	5.6	12
30	Querying now-relative data. Journal of Intelligent Information Systems, 2013, 41, 285-311.	3.9	12
31	Temporal Detection of Guideline Interactions. , 2015, , .		12
32	An implicit approach to deal with periodically repeated medical data. Artificial Intelligence in Medicine, 2012, 55, 149-162.	6.5	11
33	A Comprehensive Approach to â€~Now' in Temporal Relational Databases: Semantics and Representation. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 2538-2551.	5.7	11
34	Toward a Unifying Ontology Dealing with Both User–Defined Periodicity and Temporal Constraints About Repeated Events. Computational Intelligence, 2002, 18, 336-385.	3.2	10
35	Supporting Flexible, Efficient, and User-Interpretable Retrieval of Similar Time Series. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 677-689.	5.7	10
36	Capturing Telic/Atelic Temporal Data Semantics: Generalizing Conventional Conceptual Models. IEEE Transactions on Knowledge and Data Engineering, 2014, 26, 528-548.	5.7	10

#	Article	IF	CITATIONS
37	Irregular Indeterminate Repeated Facts in Temporal Relational Databases. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 1075-1079.	5.7	10
38	Modeling Clinical Guidelines through Petri Nets. Lecture Notes in Computer Science, 2009, , 61-70.	1.3	10
39	Managing Temporal Constraints with Preferences: Representation, Reasoning, and Querying. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2067-2071.	5.7	9
40	Local reasoning and knowledge compilation for efficient temporal abduction. IEEE Transactions on Knowledge and Data Engineering, 2002, 14, 1230-1248.	5.7	8
41	A mathematical framework for the semantics of symbolic languages representing periodic time. Annals of Mathematics and Artificial Intelligence, 2006, 46, 317-347.	1.3	8
42	A Mixed-Initiative Approach to the Conciliation of Clinical Guidelines for Comorbid Patients. Lecture Notes in Computer Science, 2015, , 95-108.	1.3	8
43	Nearly Periodic Facts in Temporal Relational Databases. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 2822-2826.	5.7	8
44	A 1NF temporal relational model and algebra coping with valid-time temporal indeterminacy. Journal of Intelligent Information Systems, 2016, 47, 345-374.	3.9	8
45	Supporting Multi-level User-driven Detection of Guideline Interactions. , 2015, , .		8
46	An efficient algorithm for temporal abduction. Lecture Notes in Computer Science, 1997, , 195-206.	1.3	8
47	Applying artificial intelligence to clinical guidelines: the GLARE approach. Studies in Health Technology and Informatics, 2008, 139, 273-82.	0.3	8
48	Analysis of the GLARE and GPROVE Approaches to Clinical Guidelines. Lecture Notes in Computer Science, 2010, , 76-87.	1.3	7
49	Coping with Events in Temporal Relational Databases. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 1181-1185.	5.7	7
50	A Constraint-Based Approach for the Conciliation of Clinical Guidelines. Lecture Notes in Computer Science, 2016, , 77-88.	1.3	7
51	Trace retrieval for business process operational support. Expert Systems With Applications, 2016, 55, 212-221.	7.6	7
52	Towards an integration of time and causation in a hybrid knowledge representation formalism. International Journal of Intelligent Systems, 1994, 9, 303-338.	5.7	6
53	The POINT approach to represent now in bitemporal databases. Journal of Intelligent Information Systems, 2009, 32, 297-323.	3.9	6
54	Valid-Time Indeterminacy in Temporal Relational Databases: A Family of Data Models. , 2010, , .		6

#	Article	IF	CITATIONS
55	Interactive mining and retrieval from process traces. Expert Systems With Applications, 2018, 110, 62-79.	7.6	6
56	Conformance analysis for comorbid patients in Answer Set Programming. Journal of Biomedical Informatics, 2020, 103, 103377.	4.3	6
57	Orthogonal Operators for User-Defined Symbolic Periodicities. Lecture Notes in Computer Science, 2004, , 137-147.	1.3	6
58	A Hybrid Multi-layered Approach to the Integration of Workflow and Clinical Guideline Approaches. Lecture Notes in Business Information Processing, 2010, , 539-544.	1.0	6
59	Multi-level Abstractions and Multi-dimensional Retrieval of Cases with Time Series Features. Lecture Notes in Computer Science, 2009, , 225-239.	1.3	6
60	A context-adaptable approach to clinical guidelines. Studies in Health Technology and Informatics, 2004, 107, 169-73.	0.3	6
61	A knowledge server for reasoning about temporal constraints between classes and instances of events. International Journal of Intelligent Systems, 2004, 19, 919-947.	5.7	5
62	Representing and querying now-relative relational medical data. Artificial Intelligence in Medicine, 2018, 86, 33-52.	6.5	5
63	Clinical Guidelines Adaptation: Managing Authoring and Versioning Issues. Lecture Notes in Computer Science, 2005, , 151-155.	1.3	5
64	Managing Clinical Guidelines Contextualization in the GLARE System. Lecture Notes in Computer Science, 2005, , 454-465.	1.3	5
65	Representing Knowledge Levels in Clinical Guidelines. Lecture Notes in Computer Science, 1999, , 254-258.	1.3	5
66	Supporting Physicians in the Detection of the Interactions between Treatments of Co-Morbid Patients. Advances in Healthcare Information Systems and Administration Book Series, 2015, , 165-193.	0.2	5
67	The temporal aspects of clinical guidelines. Studies in Health Technology and Informatics, 2008, 139, 81-100.	0.3	5
68	Toward a comprehensive treatment of temporal constraints about periodic events. International Journal of Intelligent Systems, 2003, 18, 429-468.	5.7	4
69	A flexible approach to user-defined symbolic granularities in temporal databases. , 2005, , .		4
70	Querying Probabilistic Temporal Constraints for Guideline Interaction Analysis: GLARE's Approach. Lecture Notes in Computer Science, 2018, , 3-15.	1.3	4
71	Supporting the distributed execution of clinical guidelines by multiple agents. Artificial Intelligence in Medicine, 2019, 98, 87-108.	6.5	4
72	Temporal Periodicity. , 2009, , 3004-3008.		4

#	Article	IF	CITATIONS
73	Multi-level Interactive Medical Process Mining. Lecture Notes in Computer Science, 2017, , 256-260.	1.3	4
74	Recognizing and Discovering Complex Events in Sequences. Lecture Notes in Computer Science, 2002, , 374-382.	1.3	4
75	META-GLARE: A Meta-System for Defining Your Own CIG System: Architecture and Acquisition. Lecture Notes in Computer Science, 2014, , 95-110.	1.3	4
76	Temporal reasoning about composite and/or periodic events. Journal of Experimental and Theoretical Artificial Intelligence, 2006, 18, 87-115.	2.8	3
77	A modular approach to user-defined symbolic periodicities. Data and Knowledge Engineering, 2008, 66, 163-198.	3.4	3
78	Extending Temporal Databases to Deal with Telic/Atelic Medical Data. Lecture Notes in Computer Science, 2005, , 58-66.	1.3	3
79	Considering Temporal Preferences and Probabilities in Guideline Interaction Analysis. Lecture Notes in Computer Science, 2019, , 120-124.	1.3	3
80	Answer Set Programming for Temporal Conformance Analysis of Clinical Guidelines Execution. Lecture Notes in Computer Science, 2015, , 65-79.	1.3	3
81	Variable Granularity Space Filling Curve for Indexing Multidimensional Data. Lecture Notes in Computer Science, 2011, , 111-124.	1.3	3
82	Exploiting Decision Theory for Supporting Therapy Selection in Computerized Clinical Guidelines. Lecture Notes in Computer Science, 2005, , 136-140.	1.3	3
83	Intelligent Data Interpretation and Case Base Exploration through Temporal Abstractions. Lecture Notes in Computer Science, 2010, , 36-50.	1.3	3
84	Temporal aggregation on user-defined granularities. Journal of Intelligent Information Systems, 2012, 38, 785-813.	3.9	2
85	A General Approach to Represent and Query Now-Relative Medical Data in Relational Databases. Lecture Notes in Computer Science, 2015, , 327-331.	1.3	2
86	Dealing with temporal indeterminacy in relational databases: An AI methodology. AI Communications, 2019, 32, 207-221.	1.2	2
87	Periodicity-Based Temporal Constraints. Lecture Notes in Computer Science, 2005, , 62-65.	1.3	2
88	Coping with "Exceptional―Patients in META-GLARE. Communications in Computer and Information Science, 2019, , 298-325.	0.5	2
89	Probabilistic quantitative temporal reasoning. , 2017, , .		2
90	Temporal Conformance Analysis and Explanation on Comorbid Patients. , 2018, , .		2

6

#	Article	IF	CITATIONS
91	Telic Distinction in Temporal Databases. , 2009, , 2911-2914.		2
92	META-GLARE: A Meta-Engine for Executing Computer Interpretable Guidelines. Lecture Notes in Computer Science, 2015, , 37-50.	1.3	2
93	Simulating Clinical Guidelines for Medical Education. , 2019, , .		2
94	Temporal consistency checking in clinical guidelines acquisition and execution: the GLARE's approach. AMIA Annual Symposium proceedings, 2003, , 659-63.	0.2	2
95	Temporal reasoning and query answering with preferences and probabilities for medical decision support. Expert Systems With Applications, 2022, 195, 116565.	7.6	2
96	A Hybrid Approach to the Verification of Computer Interpretable Guidelines. Lecture Notes in Computer Science, 2015, , 287-315.	1.3	1
97	A time series retrieval tool for sub-series matching. Applied Intelligence, 2015, 43, 132-149.	5.3	1
98	Towards an Integration of Workflows and Clinical Guidelines: A Case Study. Lecture Notes in Computer Science, 2016, , 3-13.	1.3	1
99	GLARE-SSCPM: an Intelligent Systemto Support the Treatment of Comorbid Patients. IEEE Intelligent Systems, 2024, , 1-1.	4.0	1
100	Dealing with qualitative and quantitative temporal information concerning periodic events. Lecture Notes in Computer Science, 1994, , 275-284.	1.3	1
101	Temporal Reasoning with Layered Preferences. Lecture Notes in Computer Science, 2018, , 367-376.	1.3	1
102	Flexible and Efficient Retrieval of Haemodialysis Time Series. Lecture Notes in Computer Science, 2013, , 154-167.	1.3	1
103	Combining time points and time intervals in a hybrid knowledge representation formalism. Lecture Notes in Computer Science, 1991, , 246-255.	1.3	1
104	A General Framework for the Distributed Management of Exceptions and Comorbidities. , 2018, , .		1
105	Temporal Periodicity. , 2018, , 4012-4016.		1
106	Supporting Multiple Agents in the Execution of Clinical Guidelines. , 2018, , .		1
107	Run-time Support to Comorbidities in GLARE-SSCPM. , 2019, , .		1
108	Towards an "Operational―Educational Model in Healthcare: Exploiting Computer-Interpretable Guidelines. , 2019, , .		1

#	Article	IF	CITATIONS
109	Clinical guidelines contextualization in GLARE. AMIA Annual Symposium proceedings, 2006, , 860.	0.2	1
110	Supporting physicians in taking decisions in clinical guidelines: the GLARE "what if" facility. Proceedings, 2002, , 772-6.	0.6	1
111	Exceptions handling within GLARE clinical guideline framework. AMIA Annual Symposium proceedings, 2012, 2012, 512-21.	0.2	1
112	Supporting therapy selection in computerized clinical guidelines by means of decision theory. Studies in Health Technology and Informatics, 2007, 129, 855-60.	0.3	1
113	Automatic treatment of temporal issues in clinical guidelines in the GLARE system. Studies in Health Technology and Informatics, 2007, 129, 935-40.	0.3	1
114	Management of uncertainty in the attachment problem in natural language processing. , 1990, , 469-478.		0
115	Integrating world knowledge and linguistic constraints in the temporal interpretation of "when― sentences. International Journal of Intelligent Systems, 1998, 11, 367-408.	5.7	Ο
116	An intensional approach to qualitative and quantitative periodicity-dependent temporal constraints. International Journal of Intelligent Systems, 2009, 24, 902-918.	5.7	0
117	An intensional approach for periodic data in relational databases. Journal of Intelligent Information Systems, 2013, 41, 151-186.	3.9	Ο
118	Advances in the GINSENG Project. , 2014, , .		0
119	Supporting Physicians and Patients Through Recommendation: Guidelines and Beyond. Lecture Notes in Computer Science, 2015, , 281-286.	1.3	0
120	The Impact of the TelicAtelic Dichotomy on Temporal Databases. , 2016, , .		0
121	An Al Approach to Temporal Indeterminacy in Relational Databases. Lecture Notes in Computer Science, 2018, , 16-28.	1.3	0
122	ASP for Conformance Analysis and Explanation of Clinical Guidelines Execution. KI - Kunstliche Intelligenz, 2018, 32, 201-204.	3.2	0
123	Reasoning and querying bounds on differences with layered preferences. International Journal of Intelligent Systems, 2021, 36, 1998-2035.	5.7	0
124	The Telic/Atelic Distinction in Temporal Databases. Lecture Notes in Computer Science, 2012, , 47-56.	1.3	0
125	Temporal Periodicity. , 2016, , 1-6.		0
126	Knowledge-Based Support to the Treatment of Exceptions in Computer Interpretable Clinical Guidelines. International Journal of Knowledge-Based Organizations, 2016, 6, 1-27.	0.4	0

#	Article	IF	CITATIONS
127	Temporal reasoning techniques for the analysis of interactions in the treatment of comorbid patients. , 2017, , .		0
128	Supporting Physicians in the Detection of the Interactions between Treatments of Co-Morbid Patients. , 2018, , 522-550.		0
129	Telic Distinction in Temporal Databases. , 2018, , 3884-3888.		0
130	META-GLARE's Supports to Agent Coordination. Communications in Computer and Information Science, 2019, , 464-496.	0.5	0
131	Knowledge-Based Support to the Treatment of Exceptions in Computer Interpretable Clinical Guidelines. , 2020, , 658-687.		0
132	Supporting Knowledge-Based Decision Making in the Medical Context. Advances in Business Information Systems and Analytics Book Series, 0, , 24-42.	0.4	0
133	Advanced treatment of temporal phenomena in clinical guidelines. AMIA Annual Symposium proceedings, 2006, , 1117.	0.2	0
134	GLARE: a domain-independent system for acquiring, representing and executing clinical guidelines. AMIA Annual Symposium proceedings, 2006, , 1037.	0.2	0
135	Coping efficiently with now-relative medical data. AMIA Annual Symposium proceedings, 2008, , 722-6.	0.2	0
136	Automatic checking of the correctness of clinical guidelines in GLARE. Studies in Health Technology and Informatics, 2007, 129, 807-11.	0.3	0