
Diana S Nascimento

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/670908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload. Cardiovascular Research, 2022, 118, 2688-2702.	3.8	3
2	Gut Microbiome and Organ Fibrosis. Nutrients, 2022, 14, 352.	4.1	20
3	In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. Nature Aging, 2022, 2, 397-411.	11.6	23
4	Stereological estimation of cardiomyocyte number and proliferation. Methods, 2021, 190, 55-62.	3.8	6
5	Bone marrow contribution to the heart from development to adulthood. Seminars in Cell and Developmental Biology, 2021, 112, 16-26.	5.0	2
6	Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart. Circulation Research, 2021, 128, 24-38.	4.5	60
7	Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment. Frontiers in Cell and Developmental Biology, 2021, 9, 624601.	3.7	5
8	Human umbilical cord tissue-derived mesenchymal stromal cells as adjuvant therapy for myocardial infarction: a review of current evidence focusing on pre-clinical large animal models and early human trials. Cytotherapy, 2021, 23, 974-979.	0.7	9
9	The bright side of fibroblasts: molecular signature and regenerative cues in major organs. Npj Regenerative Medicine, 2021, 6, 43.	5.2	55
10	A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 2021, 12, 4808.	12.8	13
11	Microvascular engineering: Dynamic changes in microgel-entrapped vascular cells correlates with higher vasculogenic/angiogenic potential. Biomaterials, 2020, 228, 119554.	11.4	28
12	Myocardial Edema: an Overlooked Mechanism of Septic Cardiomyopathy?. Shock, 2020, 53, 616-619.	2.1	19
13	Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. Learning Materials in Biosciences, 2020, , 187-211.	0.4	3
14	Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Frontiers in Cell and Developmental Biology, 2020, 8, 621644.	3.7	96
15	Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biology, 2019, 17, e3000335.	5.6	13
16	Comparable Decellularization of Fetal and Adult Cardiac Tissue Explants as 3D-like Platforms for In Vitro Studies. Journal of Visualized Experiments, 2019, , .	0.3	4
17	Establishing a Link Between Endothelial Cell Metabolism and Vascular Behaviour in a Type 1 Diabetes Mouse Model. Cellular Physiology and Biochemistry, 2019, 52, 503-516.	1.6	6
18	Abstract 896: Cardiomyocyte-derived Mir-200c-3p In Exosomes Affects Endothelial Angiogenic Capacity And Impairs Cardiac Function. Circulation Research, 2019, 125, .	4.5	2

DIANA S NASCIMENTO

#	Article	IF	CITATIONS
19	Neonatal Apex Resection Triggers Cardiomyocyte Proliferation, Neovascularization and Functional Recovery Despite Local Fibrosis. Stem Cell Reports, 2018, 10, 860-874.	4.8	31
20	Generation of a Close-to-Native <i>In Vitro</i> System to Study Lung Cells–Extracellular Matrix Crosstalk. Tissue Engineering - Part C: Methods, 2018, 24, 1-13.	2.1	7
21	MicroRNA-155 Amplifies Nitric Oxide/cGMP Signaling and Impairs Vascular Angiotensin II Reactivity in Septic Shock. Critical Care Medicine, 2018, 46, e945-e954.	0.9	22
22	Widespread cardiomyocyte proliferation and local fibrosis after neonatal apex resection support cardiac benign remodelling and functional recovery. Journal of Molecular and Cellular Cardiology, 2018, 120, 17.	1.9	0
23	Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials, 2017, 124, 211-224.	11.4	104
24	Restoring heart function and electrical integrity: closing the circuit. Npj Regenerative Medicine, 2017, 2, 9.	5.2	44
25	Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 2017, 113, 1338-1350.	3.8	193
26	Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports, 2017, 9, 136-148.	4.8	4
27	Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials, 2016, 104, 52-64.	11.4	57
28	Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure. Medical Engineering and Physics, 2016, 38, 725-732.	1.7	17
29	Optimized Heart Sampling and Systematic Evaluation of Cardiac Therapies in Mouse Models of Ischemic Injury: Assessment of Cardiac Remodeling and Semiâ€Automated Quantification of Myocardial Infarct Size. Current Protocols in Mouse Biology, 2015, 5, 359-391.	1.2	3
30	Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Research and Therapy, 2015, 6, 90.	5.5	141
31	Abstract 18331: Endothelial Microrna-155 Promotes Myocardial Microvascular Permeability and Inflammatory Cell Adhesion in Experimental Septic Cardiomyopathy. Circulation, 2015, 132, .	1.6	Ο
32	Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Research and Therapy, 2014, 5, 5.	5.5	112
33	366: The role of tumour derived extracellular matrices on macrophage polarization. European Journal of Cancer, 2014, 50, S87.	2.8	1
34	Stable Phenotype and Function of Immortalized Linâ^'Sca-1+ Cardiac Progenitor Cells in Long-Term Culture: A Step Closer to Standardization. Stem Cells and Development, 2014, 23, 1012-1026.	2.1	13
35	Sca-1+Cardiac Progenitor Cells and Heart-Making: A Critical Synopsis. Stem Cells and Development, 2014, 23, 2263-2273.	2.1	45
36	Automatic myocardial infarction size extraction in an experimental murine model using an anatomical model. , 2012, , .		1

3

#	Article	IF	CITATIONS
37	MIQuant – Semi-Automation of Infarct Size Assessment in Models of Cardiac Ischemic Injury. PLoS ONE, 2011, 6, e25045.	2.5	42
38	Automatic and Semi-automatic Analysis of the Extension of Myocardial Infarction in an Experimental Murine Model. Lecture Notes in Computer Science, 2011, , 151-158.	1.3	2
39	Molecular cloning and expression analysis of sea bass (Dicentrarchus labrax L.) tumor necrosis factor-α (TNF-α). Fish and Shellfish Immunology, 2007, 23, 701-710.	3.6	56
40	Molecular cloning and characterisation of sea bass (Dicentrarchus labrax L.) caspase-3 gene. Molecular Immunology, 2007, 44, 774-783.	2.2	73
41	First molecular cloning and characterisation of caspase-9 gene in fish and its involvement in a gram negative septicaemia. Molecular Immunology, 2007, 44, 1754-1764.	2.2	43
42	Molecular characterization, 3D modelling and expression analysis of sea bass (Dicentrarchus labrax) Tj ETQq0 0	OrgBT ∕Ov	verlock 10 Tf 5
43	Cloning, promoter analysis and expression in response to bacterial exposure of sea bass (Dicentrarchus labrax L.) interleukin-12 p40 and p35 subunits. Molecular Immunology, 2007, 44, 2277-2291.	2.2	55
	See here (Disentrarchus Jahrey) inverient chain and clear II maior histocompatibility complays		

44	Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: Sequencing and structural analysis using 3D homology modelling. Molecular Immunology, 2007, 44, 3758-3776.	2.2	13
45	Molecular cloning and characterization of sea bass (Dicentrarchus labrax L.) CD8α. Veterinary Immunology and Immunopathology, 2006, 110, 169-177.	1.2	18
46	AIP56, a novel plasmid-encoded virulence factor ofPhotobacterium damselaesubsp.piscicidawith apoptogenic activity against sea bass macrophages and neutrophils. Molecular Microbiology, 2005, 58, 1025-1038.	2.5	85