Teresa M Buck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708888/publications.pdf Version: 2024-02-01

TEDESA M RUCK

#	Article	IF	CITATIONS
1	Paraoxonase 2 is an ER chaperone that regulates the epithelial Na ⁺ channel. American Journal of Physiology - Cell Physiology, 2022, 322, C111-C121.	4.6	4
2	The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight, 2022, 7, .	5.0	11
3	The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation. Molecular and Cellular Proteomics, 2020, 19, 1896-1909.	3.8	5
4	Epithelial Ion Channel Folding and ER-Associated Degradation (ERAD). Physiology in Health and Disease, 2020, , 207-247.	0.3	0
5	Hsp104 facilitates the endoplasmicâ€reticulum–associated degradation of diseaseâ€associated and aggregationâ€prone substrates. Protein Science, 2019, 28, 1290-1306.	7.6	16
6	<i>N</i> -linked glycans are required on epithelial Na ⁺ channel subunits for maturation and surface expression. American Journal of Physiology - Renal Physiology, 2018, 314, F483-F492.	2.7	24
7	Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Current Opinion in Nephrology and Hypertension, 2018, 27, 364-372.	2.0	17
8	Thumb domains of the three epithelial Na+ channel subunits have distinct functions. Journal of Biological Chemistry, 2018, 293, 17582-17592.	3.4	6
9	Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochemical Journal, 2017, 474, 357-376.	3.7	23
10	Regulation of the epithelial Na+ channel by paraoxonase-2. Journal of Biological Chemistry, 2017, 292, 15927-15938.	3.4	13
11	Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast <i>Saccharomyces cerevisiae</i> . Physiological Genomics, 2015, 47, 198-214.	2.3	10
12	Functional Roles of Clusters of Hydrophobic and Polar Residues in the Epithelial Na+ Channel Knuckle Domain. Journal of Biological Chemistry, 2015, 290, 25140-25150.	3.4	11
13	Escaping the endoplasmic reticulum: why does a molecular chaperone leave home for greener pastures?. EMBO Journal, 2015, 34, 1-3.	7.8	28
14	The Lhs1/GRP170 Chaperones Facilitate the Endoplasmic Reticulum-associated Degradation of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2013, 288, 18366-18380.	3.4	47
15	Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?. American Journal of Physiology - Renal Physiology, 2011, 301, F1-F11.	2.7	16
16	The Endoplasmic Reticulum–associated Degradation of the Epithelial Sodium Channel Requires a Unique Complement of Molecular Chaperones. Molecular Biology of the Cell, 2010, 21, 1047-1058.	2.1	81
17	The activities and function of molecular chaperones in the endoplasmic reticulum. Seminars in Cell and Developmental Biology, 2007, 18, 751-761.	5.0	70
18	A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization. Nature Structural and Molecular Biology, 2007, 14, 762-769.	8.2	61

Teresa M Buck

#	Article	IF	CITATIONS
19	Aberrant Folding of a Mutant Stat5b Causes Growth Hormone Insensitivity and Proteasomal Dysfunction. Journal of Biological Chemistry, 2006, 281, 6552-6558.	3.4	28
20	Differential Stability of Biogenesis Intermediates Reveals a Common Pathway for Aquaporin-1 Topological Maturation. Journal of Biological Chemistry, 2005, 280, 261-269.	3.4	30
21	Evidence for stabilization of aquaporin-2 folding mutants byN-linked glycosylation in endoplasmic reticulum. American Journal of Physiology - Cell Physiology, 2004, 287, C1292-C1299.	4.6	43
22	Cooperativity and Flexibility of Cystic Fibrosis Transmembrane Conductance Regulator Transmembrane Segments Participate in Membrane Localization of a Charged Residue. Journal of Biological Chemistry, 2002, 277, 39507-39514.	3.4	35