Raju Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708775/publications.pdf

Version: 2024-02-01

47 papers

1,153 citations

331259 21 h-index 395343 33 g-index

48 all docs 48 docs citations

48 times ranked 1483 citing authors

#	Article	IF	CITATIONS
1	Synergistic Experimental and Theoretical Studies of Luminescent–Magnetic Ln ₂ Zn ₆ Clusters. Inorganic Chemistry, 2022, 61, 2141-2153.	1.9	8
2	A Nd6 molecular butterfly: a unique all-in-one material for SMM, MCE and maiden photosensitized opto-electronic device fabrication. Dalton Transactions, 2022, 51, 1617-1633.	1.6	7
3	Fascinating interlocked triacontanuclear giant nanocages. Chemical Communications, 2021, 57, 11177-11180.	2.2	2
4	Construction of a series of metal-directed MOFs to explore their physical and chemical properties. New Journal of Chemistry, 2021, 45, 6438-6449.	1.4	2
5	Pyridine-pyrazole based Al(<scp>iii</scp>) †turn on' sensor for MCF7 cancer cell imaging and detection of picric acid. RSC Advances, 2021, 11, 10094-10109.	1.7	22
6	Applying the Influence of Conformational Freedom on the Network Topologies Showing Impressive Proton Conductivity. Crystal Growth and Design, 2021, 21, 1461-1472.	1.4	7
7	Lanthanide clusters of phenanthroline containing a pyridine–pyrazole based ligand: magnetism and cell imaging. Dalton Transactions, 2021, 50, 3593-3609.	1.6	13
8	Influence of Semirigidity and Diverse Binding Modes of an Asymmetric Pyridine-pyrazole Based Bis-Chelating Ligand in Controlling Molecular Architectures and Their Properties. Crystal Growth and Design, 2020, 20, 5698-5708.	1.4	8
9	Utilization of counter anions for charge transportation in the electrical device fabrication of Zn(ii) metal–organic frameworks. Dalton Transactions, 2020, 49, 17005-17016.	1.6	7
10	A free-standing, self-healing multi-stimuli responsive gel showing cryogenic magnetic cooling. Dalton Transactions, 2020, 49, 13487-13495.	1.6	12
11	Paradoxical design of a serendipitous pyrazolate bridging mode: a pragmatic strategy for inducing ineluctable ferromagnetic coupling. Dalton Transactions, 2020, 49, 13704-13716.	1.6	2
12	Ln-MOFs using a compartmental ligand with a unique combination of hard–soft terminals and their magnetic, gas adsorption and luminescence properties. CrystEngComm, 2019, 21, 5665-5672.	1.3	11
13	Cytidine-Derived Hydrogels with Tunable Antibacterial Activities. ACS Applied Bio Materials, 2019, 2, 3171-3177.	2.3	15
14	Temperature-Induced Single-Crystal-to-Single-Crystal Transformations with Consequential Changes in the Magnetic Properties of Fe(III) Complexes. ACS Omega, 2019, 4, 8731-8738.	1.6	3
15	Designing ferromagnetism in Cu(II) complexes using an elusive near-orthogonal bridging mode of the pyrazole ring. Polyhedron, 2019, 160, 46-52.	1.0	6
16	Designing Multifunctional MOFs Using the Inorganic Motif [Cu ₃ $(1/4$ ₃₋ OH) $(1/4$ -Pyz)] as an SBU and Their Properties. Crystal Growth and Design, 2019, 19, 992-1004.	1.4	21
17	Multifunctional Properties of a 1D Helical Co(II) Coordination Polymer: Toward Single-Ion Magnetic Behavior and Efficient Dye Degradation. ACS Omega, 2018, 3, 15315-15324.	1.6	18
18	Toxic Metal Sequestration Exploiting a Unprecedented Low-Molecular-Weight Hydrogel-to-Metallogel Transformation. ACS Omega, 2018, 3, 6022-6030.	1.6	14

#	Article	IF	Citations
19	Gel–based Controlled Synthesis of Silver Nanoparticles and Their Applications in Catalysis, Sensing and Environmental Remediation. ChemistrySelect, 2017, 2, 389-398.	0.7	7
20	A Complementary XRD and Theoretical Study of Water Induced Solid State Ionic Separation of Brâ^' and Pyrazolium: A Case for Paradoxical Cation-Water Cluster. ChemistrySelect, 2017, 2, 5288-5291.	0.7	0
21	Ln ₈ (Ln= Gd, Ho, Er, Yb) Butterfly Coreâ€Exhibiting Magnetocaloric Effect and Fieldâ€Induced SMM Behavior for Er Analouge. ChemistrySelect, 2017, 2, 11341-11345.	0.7	6
22	Systematic Study of Mutually Inclusive Influences of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymers and Their Properties. Crystal Growth and Design, 2016, 16, 3170-3179.	1.4	37
23	A novel low molecular weight supergelator showing an excellent gas adsorption, dye adsorption, self-sustaining and chemosensing properties in the gel state. RSC Advances, 2016, 6, 14009-14015.	1.7	22
24	Design of chiral Co(<scp>ii</scp>)-MOFs and their application in environmental remediation and waste water treatment. RSC Advances, 2016, 6, 25149-25158.	1.7	43
25	Coordination Driven Self-Assembly in Co(II) Coordination Polymers Displaying Unprecedented Topology, Water Cluster, Chirality, and Spin-Canted Magnetic Behavior. Crystal Growth and Design, 2015, 15, 2211-2222.	1.4	31
26	Co-MOF as a sacrificial template: manifesting a new Co $<$ sub $>$ 3 $<$ /sub $>$ 0 $<$ sub $>4</sub>/TiO₂system with a pâ\in"n heterojunction for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 20288-20296.$	5.2	110
27	Construction of Polynuclear Lanthanide (Ln = Dy ^{III} , Tb ^{III} , and Nd ^{III}) Cage Complexes Using Pyridine–Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior. Inorganic Chemistry, 2015, 54, 8197-8206.	1.9	85
28	Designing Functional Metal–Organic Frameworks by Imparting a Hexanuclear Copper-Based Secondary Building Unit Specific Properties: Structural Correlation With Magnetic and Photocatalytic Activity. Crystal Growth and Design, 2014, 14, 6391-6398.	1.4	87
29	Construction of Bis-pyrazole Based Co(II) Metal–Organic Frameworks and Exploration of Their Chirality and Magnetic Properties. Crystal Growth and Design, 2014, 14, 2853-2865.	1.4	32
30	Tuning Cu ^{II} Coordination Polymers Derived from a Bis(pyrazolecarboxylate) Ligand by Solvothermal C–H Bond Activation: Synthesis, Structures, Catalysis, and Magnetic Properties. European Journal of Inorganic Chemistry, 2014, 2014, 5874-5884.	1.0	9
31	A novel gel-based approach to wastewater treatment $\hat{a}\in$ " unique one-shot solution to potentially toxic metal and dye removal problems. Journal of Materials Chemistry A, 2014, 2, 16373-16377.	5.2	40
32	Silver-promoted gelation studies of an unorthodox chelating tripodal pyridine–pyrazole-based ligand: templated growth of catalytic silver nanoparticles, gas and dye adsorption. New Journal of Chemistry, 2014, 38, 2470.	1.4	26
33	Pyrazole-Based Metallogels Showing an Unprecedented Colorimetric Ammonia Gas Sensing through Gel-to-Gel Transformation with a Rare Event of Time-Dependent Morphology Transformation. Crystal Growth and Design, 2014, 14, 2366-2374.	1.4	24
34	Metal-Directed Formation of Molecular Helix, Cage, and Grid Using an Asymmetric Pyridine-Pyrazole Based Bis-Chelating Ligand and Properties. Crystal Growth and Design, 2013, 13, 5068-5075.	1.4	21
35	Comprehensive Study on Mutual Interplay of Multiple V-Shaped Ligands on the Helical Nature of a Series of Coordination Polymers and Their Properties. Crystal Growth and Design, 2013, 13, 5487-5498.	1.4	35
36	Azide-Functionalized Lanthanide-Based Metal–Organic Frameworks Showing Selective CO ₂ Gas Adsorption and Postsynthetic Cavity Expansion. Inorganic Chemistry, 2013, 52, 3588-3590.	1.9	30

#	Article	IF	CITATIONS
37	Identification of a robust and reproducible noncluster-type SBU: effect of coexistent groups on network topologies, helicity, and properties. CrystEngComm, 2013, 15, 8353.	1.3	40
38	Elusive Nanoscale Metal–Organicâ€Particleâ€Supported Metallogel Formation Using a Nonconventional Chelating Pyridine–Pyrazoleâ€Based Bisâ€Amide Ligand. Chemistry - A European Journal, 2013, 19, 5537-5541.	1.7	29
39	Construction of helical networks by using multiple V-shaped mixed ligand systems. CrystEngComm, 2012, 14, 561-572.	1.3	34
40	Construction of Co(ii) coordination polymers comprising of helical units using a flexible pyrazole based ligand. CrystEngComm, 2012, 14, 7428.	1.3	22
41	Influence of chloroâ√chloro interaction and π–π stacking in 3D supramolecular framework construction. CrystEngComm, 2011, 13, 6136.	1.3	13
42	Polymorphism study of a three-component system showing encapsulation of ion pairs and a zwitterion. CrystEngComm, 2010, 12, 3786.	1.3	1
43	Construction of first anion-assisted helix inside a helix network. CrystEngComm, 2010, 12, 366-369.	1.3	14
44	Identification of Reaction Conditions That Can Reproducibly Lead to a Particular Vertex Geometry: Quest for a Robust and Reproducible Metal-Carboxylate Noncluster-type SBU. Crystal Growth and Design, 2009, 9, 3488-3496.	1.4	37
45	Influence of Anion on the Coordination Mode of a Flexible Neutral Ligand in Zn(II) Complexes: From Discrete Zero-Dimensional to Infinite 1D Helical Chains, 2D Nanoporous Bilayer Networks, and 3D Interpenetrated Metalâ^Organic Frameworks. Crystal Growth and Design, 2009, 9, 1095-1105.	1.4	7 5
46	Crystal Chemistry of 1:1 Molecular Complexes of Carbamate Salts Formed by Slow Aerial Carbonation of Amines. Journal of Chemical Crystallography, 2008, 38, 787-792.	0.5	10
47	Crystal engineering of zinc(II) metal–organic frameworks: role of steric bulk and angular disposition of coordinating sites of the ligands. CrystEngComm, 2008, 10, 1167.	1.3	55