SÃ, ren Kiil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708757/publications.pdf Version: 2024-02-01

	117625	76900
5,883	34	74
citations	h-index	g-index
131	131	5522
docs citations	times ranked	citing authors
	5,883 citations 131 docs citations	5,88334citationsh-index131131docs citationstimes ranked

SÃ DEN KIU

#	Article	IF	CITATIONS
1	Interactions between calcium carbonate and ammonium polyphosphate in lowâ€borate concentration hydrocarbon intumescent coatings. Fire and Materials, 2022, 46, 499-512.	2.0	6
2	Interlayer molecular migration and reaction in an epoxy-polyurethane coating system: Implications for the system hardness. Progress in Organic Coatings, 2021, 151, 106083.	3.9	1
3	Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatings. Journal of Coatings Technology Research, 2021, 18, 349-359.	2.5	4
4	On-line, non-Newtonian capillary rheometry for continuous and in-line coatings production. Journal of Coatings Technology Research, 2021, 18, 611-626.	2.5	3
5	Quantitative Characterization of Highly Porous Structures with Fluorescence Microscopy and Microcomputed Tomography. Industrial & Engineering Chemistry Research, 2021, 60, 5463-5470.	3.7	1
6	Review of heat exposure equipment and in-situ characterisation techniques for intumescent coatings. Fire Safety Journal, 2021, 121, 103264.	3.1	9
7	Thermal insulation performance and char formation and degradation mechanisms of boron-containing hydrocarbon intumescent coatings. Fire Safety Journal, 2021, 123, 103369.	3.1	9
8	Non-Destructive Subsurface Inspection of Marine and Protective Coatings Using Near- and Mid-Infrared Optical Coherence Tomography. Coatings, 2021, 11, 877.	2.6	9
9	Degradation mechanisms of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures. Progress in Organic Coatings, 2021, 156, 106268.	3.9	4
10	Proof of concept investigation of alternative and less harmful boron compounds for epoxy-based hydrocarbon intumescent coatings. Fire Safety Journal, 2021, 125, 103437.	3.1	1
11	Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatings. Journal of Coatings Technology Research, 2021, 18, 831-842.	2.5	6
12	Influence of CO ₂ at HPHT Conditions on the Properties and Failures of an Amine-Cured Epoxy Novolac Coating. Industrial & Engineering Chemistry Research, 2021, 60, 14768-14778.	3.7	4
13	Wet clay adhesion to antistick coatings: effects of binder type and surface roughness. Journal of Coatings Technology Research, 2020, 17, 69-79.	2.5	0
14	Effects of coating ingredients on the thermal properties and morphological structures of hydrocarbon intumescent coating chars. Progress in Organic Coatings, 2020, 143, 105626.	3.9	20
15	Experimental investigation and mathematical modeling of the reaction between SO2(g) and CaCO3(s)-containing micelles in lube oil for large two-stroke marine diesel engines. Chemical Engineering Journal, 2020, 388, 124188.	12.7	7
16	Comparison of an industrial- and a laboratory-scale furnace for analysis of hydrocarbon intumescent coating performance. Journal of Fire Sciences, 2020, 38, 309-329.	2.0	12
17	Continuous Crystallization with Gas Entrainment: Evaluating the Effect of a Moving Gas Phase in an MSMPR Crystallizer. Organic Process Research and Development, 2019, 23, 252-262.	2.7	9
18	Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char properties. Progress in Organic Coatings, 2019, 135, 321-330.	3.9	29

#	Article	IF	CITATIONS
19	Leveling measurements of antifouling coatings using an optical profilometer: Effects of additives and solvent concentration and type. Progress in Organic Coatings, 2019, 132, 159-168.	3.9	10
20	Leveling kinetics of coatings with solvent evaporation and non-Newtonian rheology. Progress in Organic Coatings, 2019, 132, 169-177.	3.9	9
21	Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Engines. Industrial & Engineering Chemistry Research, 2019, 58, 138-155.	3.7	5
22	Simultaneous acid exposure and erosive particle wear of thermoset coatings. Journal of Coatings Technology Research, 2018, 15, 457-469.	2.5	2
23	Drag resistance of ship hulls: effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams. Journal of Coatings Technology Research, 2018, 15, 657-669.	2.5	9
24	Redesign of a Grignard-Based Active Pharmaceutical Ingredient (API) Batch Synthesis to a Flow Process for the Preparation of Melitracen HCl. Organic Process Research and Development, 2018, 22, 228-235.	2.7	18
25	Optimization of Grignard Addition to Esters: Kinetic and Mechanistic Study of Model Phthalide Using Flow Chemistry. Industrial & Engineering Chemistry Research, 2018, 57, 4859-4866.	3.7	12
26	Characterization of a Multistage Continuous MSMPR Crystallization Process Assisted by Image Analysis of Elongated Crystals. Crystal Growth and Design, 2018, 18, 6455-6469.	3.0	18
27	Diffusion cell investigations into the acidic degradation of organic coatings. Journal of Coatings Technology Research, 2018, 15, 1201-1215.	2.5	3
28	Effect of Air Injection on Nucleation Rates: An Approach from Induction Time Statistics. Crystal Growth and Design, 2017, 17, 3287-3294.	3.0	17
29	Acid-resistant organic coatings for the chemical industry: a review. Journal of Coatings Technology Research, 2017, 14, 279-306.	2.5	38
30	Mathematical modeling of pigment dispersion taking into account the full agglomerate particle size distribution. Journal of Coatings Technology Research, 2017, 14, 69-84.	2.5	5
31	Reaction of Sulfuric Acid in Lube Oil: Implications for Large Two-Stroke Diesel Engines. , 2017, , .		3
32	Engineering model for intumescent coating behavior in a pilotâ€scale gasâ€fired furnace. AICHE Journal, 2016, 62, 3947-3962.	3.6	9
33	Long-term stability of PEC-based antifouling surfaces in seawater. Journal of Coatings Technology Research, 2016, 13, 567-575.	2.5	33
34	A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry. Organic Process Research and Development, 2016, 20, 2043-2049.	2.7	1
35	Thermodynamic Modeling of Multiâ€phase Solid–Liquid Equilibria in Industrialâ€Grade Oils and Fats. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 17-28. 	1.9	15
36	Rain erosion of wind turbine blade coatings using discrete water jets: Effects of water cushioning, substrate geometry, impact distance, and coating properties. Wear, 2015, 328-329, 140-148.	3.1	25

#	Article	IF	CITATIONS
37	Erosion of wind turbine blade coatings – Design and analysis of jet-based laboratory equipment for performance evaluation. Progress in Organic Coatings, 2015, 78, 103-115.	3.9	38
38	Effects of biofouling development on drag forces of hull coatings for ocean-going ships: a review. Journal of Coatings Technology Research, 2015, 12, 415-444.	2.5	92
39	Kinetic modeling of multi-component crystallization of industrial-grade oils and fats. European Journal of Lipid Science and Technology, 2015, 117, 1066-1078.	1.5	5
40	Estimation of long-term drag performance of fouling control coatings using an ocean-placed raft with multiple dynamic rotors. Journal of Coatings Technology Research, 2015, 12, 975-995.	2.5	8
41	Quantitative analysis of silica aerogel-based thermal insulation coatings. Progress in Organic Coatings, 2015, 89, 26-34.	3.9	19
42	Quantitative Mapping of Mechanisms for Photoinitiated Coating Degradation. , 2015, , 185-198.		1
43	Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant. AICHE Journal, 2014, 60, 2382-2388.	3.6	12
44	Laboratory and gas-fired furnace performance tests of epoxy primers for intumescent coatings. Progress in Organic Coatings, 2014, 77, 1577-1584.	3.9	15
45	Model-based analysis of thermal insulation coatings. Journal of Coatings Technology Research, 2014, 11, 495-507.	2.5	3
46	Separation of Enantiomers by Preferential Crystallization: Mathematical Modeling of a Coupled Crystallizer Configuration. Organic Process Research and Development, 2014, 18, 601-612.	2.7	4
47	Separation of Enantiomers by Continuous Preferential Crystallization: Experimental Realization Using a Coupled Crystallizer Configuration. Organic Process Research and Development, 2013, 17, 1010-1020.	2.7	22
48	Full-Scale Continuous Mini-Reactor Setup for Heterogeneous Grignard Alkylation of a Pharmaceutical Intermediate. Organic Process Research and Development, 2013, 17, 1142-1148.	2.7	18
49	Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates. Progress in Organic Coatings, 2013, 76, 1851-1857.	3.9	31
50	Foaming in wet flue gas desulfurization plants: Laboratoryâ€scale investigation of longâ€ŧerm performance of antifoaming agents. AICHE Journal, 2013, 59, 3741-3747.	3.6	7
51	Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers. Progress in Organic Coatings, 2013, 76, 1730-1737.	3.9	8
52	Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant. Industrial & Engineering Chemistry Research, 2012, 51, 10100-10107.	3.7	14
53	Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator. Organic Process Research and Development, 2012, 16, 888-900.	2.7	58
54	Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing. Progress in Organic Coatings, 2012, 75, 309-318.	3.9	119

#	Article	IF	CITATIONS
55	Active pharmaceutical ingredient (API) production involving continuous processes – A process system engineering (PSE)-assisted design framework. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 437-456.	4.3	63
56	Monitoring and Control of a Continuous Grignard Reaction for the Synthesis of an Active Pharmaceutical Ingredient Intermediate Using Inline NIR spectroscopy. Organic Process Research and Development, 2012, 16, 901-914.	2.7	56
57	Model-based analysis of photoinitiated coating degradation under artificial exposure conditions. Journal of Coatings Technology Research, 2012, 9, 375-398.	2.5	31
58	Design and operation of a filter reactor for continuous production of a selected pharmaceutical intermediate. Chemical Engineering Science, 2012, 71, 111-117.	3.8	23
59	Performance of a Wet Flue Gas Desulfurization Pilot Plant under Oxy-Fuel Conditions. Industrial & Engineering Chemistry Research, 2011, 50, 4238-4244.	3.7	24
60	A systematic methodology for the design of continuous active pharmaceutical ingredient production processes. Computer Aided Chemical Engineering, 2011, , 271-275.	0.5	1
61	Mathematical modelling of simultaneous solvent evaporation and chemical curing in thermoset coatings: A parameter study. Progress in Organic Coatings, 2011, 70, 192-198.	3.9	10
62	Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methods. Progress in Organic Coatings, 2011, 70, 342-352.	3.9	128
63	Investigation of the gypsum quality at three full-scale wet flue gas desulphurisation plants. Fuel, 2011, 90, 2965-2973.	6.4	12
64	Replacement of traditional seawater-soluble pigments by starch and hydrolytic enzymes in polishing antifouling coatings. Journal of Coatings Technology Research, 2010, 7, 355-363.	2.5	4
65	Quantification of simultaneous solvent evaporation and chemical curing in thermoset coatings. Journal of Coatings Technology Research, 2010, 7, 569-586.	2.5	16
66	Reduction of cathodic delamination rates of anticorrosive coatings using free radical scavengers. Journal of Coatings Technology Research, 2010, 7, 773-786.	2.5	22
67	Cathodic delamination: Quantification of ionic transport rates along coating–steel interfaces. Progress in Organic Coatings, 2010, 68, 70-78.	3.9	35
68	Antifouling effect of hydrogen peroxide release from enzymatic marine coatings: Exposure testing under equatorial and Mediterranean conditions. Progress in Organic Coatings, 2010, 68, 248-257.	3.9	31
69	Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate. Progress in Organic Coatings, 2010, 68, 283-292.	3.9	63
70	Influence of substrate topography on cathodic delamination of anticorrosive coatings. Progress in Organic Coatings, 2009, 64, 142-149.	3.9	43
71	Quantification of gypsum crystal nucleation, growth, and breakage rates in a wet flue gas desulfurization pilot plant. AICHE Journal, 2009, 55, 2746-2753.	3.6	11
72	Anticorrosive coatings: a review. Journal of Coatings Technology Research, 2009, 6, 135-176.	2.5	709

#	Article	IF	CITATIONS
73	Inactivation of a solid-state detergent protease by hydrogen peroxide vapor and humidity. Journal of Biotechnology, 2009, 141, 73-79.	3.8	6
74	Spray Drying of Suspensions for Pharma and Bio Products: Drying Kinetics and Morphology. Industrial & Engineering Chemistry Research, 2009, 48, 3657-3664.	3.7	27
75	A passive apparatus for controlled-flux delivery of biocides: hydrogen peroxide as an example. Biofouling, 2009, 26, 213-222.	2.2	3
76	Evaluation method for the drying performance of enzyme containing formulations. Biochemical Engineering Journal, 2008, 40, 121-129.	3.6	15
77	Foaming in Wet Flue Gas Desulfurization Plants:Â The Influence of Particles, Electrolytes, and Buffers. Industrial & Engineering Chemistry Research, 2008, 47, 3239-3246.	3.7	42
78	Marine biofouling protection: design of controlled release antifouling paints. Computer Aided Chemical Engineering, 2007, , 181-238.	0.5	12
79	Applicability of a Fiber-Supported Catalyst on a Buchwald–Hartwig Amination Reaction. Organic Process Research and Development, 2007, 11, 956-965.	2.7	19
80	Process Development of Continuous Glycerolysis in an Immobilized Enzyme-Packed Reactor for Industrial Monoacylglycerol Production. Journal of Agricultural and Food Chemistry, 2007, 55, 7786-7792.	5.2	23
81	Enzyme-based antifouling coatings: a review. Biofouling, 2007, 23, 369-383.	2.2	172
82	Adhesion between coating layers based on epoxy and silicone. Journal of Colloid and Interface Science, 2007, 316, 678-686.	9.4	26
83	Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry. Progress in Organic Coatings, 2007, 60, 238-247.	3.9	11
84	Evaluation of Binary Solvent Mixtures for Efficient Monoacylglycerol Production by Continuous Enzymatic Glycerolysis. Journal of Agricultural and Food Chemistry, 2006, 54, 7113-7119.	5.2	61
85	Presence and effects of marine microbial biofilms on biocide-based antifouling paints. Biofouling, 2006, 22, 33-41.	2.2	59
86	Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwaldâ^'Hartwig Amination Reaction. Organic Process Research and Development, 2006, 10, 762-769.	2.7	37
87	Parametric Study of Tin-Free Antifouling Model Paint Behavior Using Rotary Experiments. Industrial & Engineering Chemistry Research, 2006, 45, 1636-1649.	3.7	19
88	Model based analysis of the drying of a single solution droplet in an ultrasonic levitator. Chemical Engineering Science, 2006, 61, 2701-2709.	3.8	56
89	Experimental investigation of the degradation rate of adipic acid in wet flue gas desulphurisation plants. Fuel, 2006, 85, 725-735.	6.4	12
90	Effects of marine microbial biofilms on the biocide release rate from antifouling paints—A model-based analysis. Progress in Organic Coatings, 2006, 57, 56-66.	3.9	49

#	Article	IF	CITATIONS
91	Dissolution rate measurements of sea water soluble pigments for antifouling paints: ZnO. Progress in Organic Coatings, 2006, 56, 327-337.	3.9	86
92	Drying of latex films and coatings: Reconsidering the fundamental mechanisms. Progress in Organic Coatings, 2006, 57, 236-250.	3.9	64
93	Mathematical modeling of tin-free chemically-active antifouling paint behavior. AICHE Journal, 2006, 52, 1926-1940.	3.6	27
94	Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems. Progress in Organic Coatings, 2005, 53, 256-275.	3.9	98
95	Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 2004, 50, 75-104.	3.9	1,787
96	Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber. Fuel, 2004, 83, 1151-1164.	6.4	75
97	Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. Journal of Controlled Release, 2003, 90, 1-21.	9.9	84
98	Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation. Chemical Engineering Science, 2003, 58, 4695-4703.	3.8	72
99	Experimental Study of Drag Resistance Using a Laboratory Scale Rotary Set-up. Biofouling, 2003, 19, 45-51.	2.2	30
100	Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling: A Literature Review. Biofouling, 2003, 19, 37-43.	2.2	41
101	Seawater-soluble pigments and their potential use in self-polishing antifouling paints: simulation-based screening tool. Progress in Organic Coatings, 2002, 45, 423-434.	3.9	56
102	Dynamic simulations of a self-polishing antifouling paint exposed to seawater. Journal of Coatings Technology, 2002, 74, 45-54.	0.7	52
103	Use of spray dry absorption product in wet flue gas desulphurisation plants: pilot-scale experiments. Fuel, 2002, 81, 1899-1905.	6.4	20
104	Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant. Chemical Engineering Science, 2002, 57, 347-354.	3.8	49
105	Mathematical Modelling of a Self-Polishing Antifouling Paint Exposed to Seawater: A Parameter Study. Chemical Engineering Research and Design, 2002, 80, 45-52.	5.6	58
106	Analysis of Self-Polishing Antifouling Paints Using Rotary Experiments and Mathematical Modeling. Industrial & Engineering Chemistry Research, 2001, 40, 3906-3920.	3.7	120
107	Optimisation of a wet FGD pilot plant using fine limestone and organic acids. Chemical Engineering Science, 2001, 56, 3275-3287.	3.8	78
108	Mass transfer in wetted-wall columns: Correlations at high Reynolds numbers. Chemical Engineering Science, 1998, 53, 495-503.	3.8	35

#	Article	IF	CITATIONS
109	Experimental Investigation and Modeling of a Wet Flue Gas Desulfurization Pilot Plant. Industrial & Engineering Chemistry Research, 1998, 37, 2792-2806.	3.7	133
110	Full-scale co-firing of straw and coal. Fuel, 1996, 75, 1584-1590.	6.4	92
111	A char stratification approach to characterization and quantitative thermal insulation performance of hydrocarbon intumescent coatings. Journal of Coatings Technology Research, 0, , 1.	2.5	0