
Xianming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708717/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust. Science, 2009, 323, 1357-1360.	12.6	625
2	A Genome-Wide Association Study of Resistance to Stripe Rust (<i>Puccinia striiformis</i> f.) Tj ETQq0 0 0 rg G3: Genes, Genomes, Genetics, 2015, 5, 449-465.	BT /Overlock 1.8	10 Tf 50 707 356
3	Wheat Stripe Rust Epidemic and Virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 2004, 88, 896-904.	1.4	349
4	Wheat stripe (yellow) rust caused by <i><scp>P</scp>uccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant Pathology, 2014, 15, 433-446.	4.2	313
5	Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. American Journal of Plant Sciences, 2013, 04, 608-627.	0.8	311
6	The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 2008, 116, 1155-1166.	3.6	280
7	Wheat stripe rust in China. Australian Journal of Agricultural Research, 2007, 58, 605.	1.5	263
8	High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 2013, 4, 2673.	12.8	238
9	Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. triticireveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics, 2013, 14, 270.	2.8	235
10	Wheat Stripe Rust Epidemics and Races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Disease, 2002, 86, 39-46.	1.4	223
11	Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theoretical and Applied Genetics, 1998, 97, 345-355.	3.6	209
12	High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics, 2005, 112, 97-105.	3.6	208
13	Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theoretical and Applied Genetics, 2005, 111, 1260-1270.	3.6	185
14	Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 2007, 114, 1277-1287.	3.6	177
15	Virulence races of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Canadian Journal of Plant Pathology, 2010, 32, 315-333.	1.4	169
16	Next Generation Sequencing Provides Rapid Access to the Genome of Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. PLoS ONE, 2011, 6, e24230.	2.5	169
17	Challenges and solutions for stripe rust control in the United States. Australian Journal of Agricultural Research, 2007, 58, 648.	1.5	168
18	Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Canadian Journal of Plant Pathology, 2014, 36, 311-326.	1.4	156

#	Article	IF	CITATIONS
19	Virulence Characterization of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Using a New Set of <i>Yr</i> Single-Gene Line Differentials in the United States in 2010. Plant Disease, 2014, 98, 1534-1542.	1.4	154
20	Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection. G3: Genes, Genomes, Genetics, 2016, 6, 2237-2253.	1.8	154
21	Relationship Between Virulence Variation and DNA Polymorphism inPuccinia striiformis. Phytopathology, 1993, 83, 1489.	2.2	153
22	Gene Action in Wheat Cultivars for Durable, High-Temperature, Adult-Plant Resistance and Interaction with Race-Specific, Seedling Resistance toPuccinia striiformis. Phytopathology, 1995, 85, 567.	2.2	146
23	Identification of Eighteen <i>Berberis</i> Species as Alternate Hosts of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> and Virulence Variation in the Pathogen Isolates from Natural Infection of Barberry Plants in China. Phytopathology, 2013, 103, 927-934.	2.2	143
24	Virulence Characterization of International Collections of the Wheat Stripe Rust Pathogen, <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Plant Disease, 2013, 97, 379-386.	1.4	134
25	Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Security, 2020, 12, 239-251.	5.3	131
26	Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp.) Tj ETQq0 0 0 2009, 119, 1119-1128.	rgBT /Ove 3.6	erlock 10 Tf 5 130
27	Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci. G3: Genes, Genomes, Genetics, 2017, 7, 361-376.	1.8	127
28	Resistance gene-analog polymorphism markers co-segregating with the YR5 gene for resistance to wheat stripe rust. Theoretical and Applied Genetics, 2003, 106, 636-643.	3.6	126
29	Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theoretical and Applied Genetics, 2000, 101, 580-589.	3.6	124
30	Characterization of Novel Gene <i>Yr79</i> and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. Phytopathology, 2018, 108, 737-747.	2.2	123
31	Role of Alternate Hosts in Epidemiology and Pathogen Variation of Cereal Rusts. Annual Review of Phytopathology, 2016, 54, 207-228.	7.8	121
32	Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics, 2012, 125, 847-857.	3.6	112
33	Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theoretical and Applied Genetics, 2011, 123, 143-157.	3.6	111
34	Inheritance of Stripe Rust Resistance in Wheat Cultivars Used to Differentiate Races of <i>Puccinia striiformis</i> in North America. Phytopathology, 1992, 82, 633.	2.2	111
35	Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar â€~Stephens' in multi-environment trials. Theoretical and Applied Genetics, 2012, 124, 1-11.	3.6	109
36	Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theoretical and Applied Genetics, 2013, 126, 523-533.	3.6	106

#	Article	IF	CITATIONS
37	Transcriptome analysis of the wheat– <i>Puccinia striiformis </i> f. sp. <i> tritici</i> interaction. Molecular Plant Pathology, 2008, 9, 157-169.	4.2	104
38	Virulence and Polymorphic DNA Relationships ofPuccinia striiformisf. sp.hordeito Other Rusts. Phytopathology, 1995, 85, 1335.	2.2	104
39	Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biology, 2017, 17, 134.	3.6	99
40	Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theoretical and Applied Genetics, 2014, 127, 935-945.	3.6	93
41	Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions Pl 331260 and Pl 480016. Theoretical and Applied Genetics, 2014, 127, 2267-2277.	3.6	93
42	Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theoretical and Applied Genetics, 2014, 127, 1449-1459.	3.6	91
43	Races of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in the United States in 2011 and 2012 and Comparison with Races in 2010. Plant Disease, 2016, 100, 966-975.	1.4	89
44	Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar â€~Stephens'. Theoretical and Applied Genetics, 2008, 117, 793-802.	3.6	88
45	Transcriptome analysis of highâ€ŧemperature adultâ€plant resistance conditioned by <i>Yr39</i> during the wheat– <i>Puccinia striiformis </i> f. sp. <i>tritici</i> interaction. Molecular Plant Pathology, 2008, 9, 479-493.	4.2	87
46	Development of resistance gene analog polymorphism markers for the <i>Yr9</i> gene resistance to wheat stripe rust. Genome, 2001, 44, 509-516.	2.0	86
47	Wheat transcription factor <i>TaWRKY7O</i> is positively involved in highâ€ŧemperature seedling plant resistance to <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant Pathology, 2017, 18, 649-661.	4.2	85
48	An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, 10, 4023.	12.8	84
49	Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theoretical and Applied Genetics, 2009, 118, 631-642.	3.6	83
50	Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 2010, 10, 9.	3.6	81
51	Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers. PLoS ONE, 2015, 10, e0126794.	2.5	81
52	Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theoretical and Applied Genetics, 2014, 127, 2349-2358.	3.6	80
53	Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theoretical and Applied Genetics, 2017, 130, 2249-2270.	3.6	80
54	Development of Sequence Tagged Site and Cleaved Amplified Polymorphic Sequence Markers for Wheat Stripe Rust Resistance Gene <i>Yr5</i> . Crop Science, 2003, 43, 2058-2064.	1.8	79

#	Article	IF	CITATIONS
55	Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. Tritici. BMC Genomics, 2009, 10, 626.	2.8	79
56	Emerging <i>Yr26</i> -Virulent Races of <i>Puccinia striiformis</i> f. <i>tritici</i> Are Threatening Wheat Production in the Sichuan Basin, China. Plant Disease, 2015, 99, 754-760.	1.4	78
57	Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection. PLoS ONE, 2009, 4, e5752.	2.5	78
58	Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Molecular Biology Reports, 2010, 37, 1045-1052.	2.3	74
59	Virulence, Frequency, and Distribution of Races of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> and <i>P. striiformis</i> f. sp. <i>hordei</i> Identified in the United States in 2008 and 2009. Plant Disease, 2012, 96, 67-74.	1.4	74
60	Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Molecular Breeding, 2012, 29, 791-800.	2.1	73
61	Gene Number and Heritability of Wheat Cultivars with Durable, High-Temperature, Adult-Plant (HTAP) Resistance and Interaction of HTAP and Race-Specific Seedling Resistance toPuccinia striiformis. Phytopathology, 1995, 85, 573.	2.2	73
62	First Report of Oregon Grape (<i>Mahonia aquifolium</i>) as an Alternate Host for the Wheat Stripe Rust Pathogen (<i>Puccinia striiformis</i> f. sp. <i>tritici</i>) Under Artificial Inoculation. Plant Disease, 2013, 97, 839-839.	1.4	71
63	Virulence Variations of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Isolates Collected from <i>Berberis</i> spp. in China. Plant Disease, 2016, 100, 131-138.	1.4	71
64	Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. Theoretical and Applied Genetics, 2017, 130, 649-667.	3.6	71
65	Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum). PLoS ONE, 2017, 12, e0179087.	2.5	69
66	Molecular Mapping of <i>YrSP</i> and Its Relationship with Other Genes for Stripe Rust Resistance in Wheat Chromosome 2BL. Phytopathology, 2015, 105, 1206-1213.	2.2	67
67	Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science, 2017, 8, 774.	3.6	66
68	Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theoretical and Applied Genetics, 2017, 130, 2127-2137.	3.6	65
69	Stripe Rust Resistance. , 2017, , 353-558.		64
70	Linkage Maps of Wheat Stripe Rust Resistance Genes <i>Yr5</i> and <i>Yr15</i> for Use in Markerâ€Assisted Selection. Crop Science, 2009, 49, 1786-1790.	1.8	63
71	Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theoretical and Applied Genetics, 2018, 131, 1835-1849.	3.6	63
72	Identification of Stripe Rust Resistance Genes in Wheat Genotypes Used to Differentiate North American Races of <i>Puccinia striiformis</i> . Phytopathology, 1992, 82, 1428.	2.2	62

#	Article	IF	CITATIONS
73	Changes of Races and Virulence Genes in <i>Puccinia striiformis</i> f. sp. <i>tritici</i> , the Wheat Stripe Rust Pathogen, in the United States from 1968 to 2009. Plant Disease, 2017, 101, 1522-1532.	1.4	61
74	Chromosomal Location of Genes for Resistance toPuccinia striiformisin Winter Wheat Cultivars Heines VII, Clement, Moro, Tyee, Tres, and Daws. Phytopathology, 1995, 85, 1362.	2.2	61
75	Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici). BMC Genomics, 2007, 8, 145.	2.8	60
76	Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Functional and Integrative Genomics, 2010, 10, 383-392.	3.5	60
77	Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. Journal of Experimental Botany, 2012, 63, 4571-4584.	4.8	60
78	Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theoretical and Applied Genetics, 2010, 121, 195-204.	3.6	59
79	Molecular Mapping of Stripe Rust Resistance Gene <i>Yr76</i> in Winter Club Wheat Cultivar Tyee. Phytopathology, 2016, 106, 1186-1193.	2.2	58
80	Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theoretical and Applied Genetics, 2011, 122, 189-197.	3.6	57
81	MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biology, 2019, 17, 65.	3.8	56
82	Understanding Molecular Mechanisms of Durable and Non-durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach. Current Genomics, 2013, 14, 111-126.	1.6	55
83	Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express. Theoretical and Applied Genetics, 2008, 116, 797-806.	3.6	52
84	Molecular Mapping of a Stripe Rust Resistance Gene in Spring Wheat Cultivar Zak. Phytopathology, 2009, 99, 1209-1215.	2.2	52
85	Chromosomal Location of Genes for Resistance toPuccinia striiformisin Seven Wheat Cultivars with Resistance Genes at theYr3andYr4Loci. Phytopathology, 1996, 86, 1228.	2.2	52
86	Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses. Molecular Biology Reports, 2011, 38, 3857-3866.	2.3	51
87	Barberry Does Not Function as an Alternate Host for <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in the U. S. Pacific Northwest Due to Teliospore Degradation and Barberry Phenology. Plant Disease, 2015, 99, 1500-1506.	1.4	51
88	Molecular Mapping of Stripe Rust Resistance in Hard Red Winter Wheat TAM 111 Adapted to the U.S. High Plains. Crop Science, 2014, 54, 1361-1373.	1.8	50
89	Genome-Wide Association Mapping of Loci for Resistance to Stripe Rust in North American Elite Spring Wheat Germplasm. Phytopathology, 2018, 108, 234-245.	2.2	50
90	Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theoretical and Applied Genetics, 2009, 118, 339-346.	3.6	48

#	Article	IF	CITATIONS
91	Models for Predicting Potential Yield Loss of Wheat Caused by Stripe Rust in the U.S. Pacific Northwest. Phytopathology, 2011, 101, 544-554.	2.2	48
92	Virulence and Simple Sequence Repeat Marker Segregation in a <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Population Produced by Selfing a Chinese Isolate on <i>Berberis shensiana</i> . Phytopathology, 2016, 106, 185-191.	2.2	48
93	Registration of â€~Snowmass' Wheat. Journal of Plant Registrations, 2011, 5, 87-90.	0.5	47
94	Barberry as Alternate Host Is Important for <i>Puccinia graminis</i> f. sp. <i>tritici</i> But Not for <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in the U.S. Pacific Northwest. Plant Disease, 2015, 99, 1507-1516.	1.4	47
95	Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genomics, 2015, 16, 579.	2.8	47
96	Development and Validation of KASP-SNP Markers for QTL Underlying Resistance to Stripe Rust in Common Wheat Cultivar P10057. Plant Disease, 2017, 101, 2079-2087.	1.4	46
97	Virulence and Molecular Characterization of Experimental Isolates of the Stripe Rust Pathogen (<i>Puccinia striiformis</i>) Indicate Somatic Recombination. Phytopathology, 2017, 107, 329-344.	2.2	46
98	QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles. Theoretical and Applied Genetics, 2019, 132, 1677-1691.	3.6	46
99	Mapping Stripe Rust Resistance in a BrundageXCoda Winter Wheat Recombinant Inbred Line Population. PLoS ONE, 2014, 9, e91758.	2.5	46
100	The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS ONE, 2017, 12, e0181963.	2.5	46
101	Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. International Journal of Molecular Sciences, 2020, 21, 478.	4.1	45
102	Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Reports, 2012, 31, 2121-2137.	5.6	43
103	Stripe Rust Resistance in the Wheat Cultivar Jagger is Due to <i>Yr17</i> and a Novel Resistance Gene. Crop Science, 2011, 51, 2455-2465.	1.8	42
104	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 February 2012 – 31 March 2012. Molecular Ecology Resources, 2012, 12, 779-781.	4.8	42
105	Unlocking Diversity in Germplasm Collections via Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat. Plant Genome, 2017, 10, plantgenome2016.12.0124.	2.8	42
106	Potential oversummering and overwintering regions for the wheat stripe rust pathogen in the contiguous United States. International Journal of Biometeorology, 2014, 58, 987-997.	3.0	41
107	Coincident QTL Which Determine Seedling and Adult Plant Resistance to Stripe Rust in Barley. Crop Science, 2002, 42, 1701-1708.	1.8	38
108	Virulence and Molecular Analyses Support Asexual Reproduction of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in the U.S. Pacific Northwest. Phytopathology, 2014, 104, 1208-1220.	2.2	38

#	Article	IF	CITATIONS
109	Genome-wide Mapping for Stripe Rust Resistance Loci in Common Wheat Cultivar Qinnong 142. Plant Disease, 2019, 103, 439-447.	1.4	38
110	Pyramiding and Validation of Quantitative Trait Locus (QTL) Alleles Determining Resistance to Barley Stripe Rust. Crop Science, 2003, 43, 2234-2239.	1.8	37
111	Grass Hosts Harbor More Diverse Isolates of <i>Puccinia striiformis</i> Than Cereal Crops. Phytopathology, 2016, 106, 362-371.	2.2	34
112	Identification of Stripe Rust Resistance Loci in U.S. Spring Wheat Cultivars and Breeding Lines Using Genome-Wide Association Mapping and <i>Yr</i> Gene Markers. Plant Disease, 2020, 104, 2181-2192.	1.4	34
113	Genetic Analysis and Molecular Mapping of Wheat Genes Conferring Resistance to the Wheat Stripe Rust and Barley Stripe Rust Pathogens. Phytopathology, 2005, 95, 427-432.	2.2	33
114	Identification and mapping of adultâ€plant stripe rust resistance in soft red winter wheat cultivar â€~ <scp>USG</scp> 3555'. Plant Breeding, 2013, 132, 53-60.	1.9	33
115	Genome-Wide Association Study and Gene Specific Markers Identified 51 Genes or QTL for Resistance to Stripe Rust in U.S. Winter Wheat Cultivars and Breeding Lines. Frontiers in Plant Science, 2020, 11, 998.	3.6	33
116	Identification of genes for resistance to Puccinia striiformis f. sp. hordei in 18 barley genotypes. Euphytica, 2003, 129, 127-146.	1.2	32
117	<i>TaXa21</i> , a Leucine-Rich Repeat Receptor–Like Kinase Gene Associated with <i>TaWRKY76</i> and <i>TaWRKY62</i> , Plays Positive Roles in Wheat High-Temperature Seedling Plant Resistance to <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1526-1535.	2.6	32
118	Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome, 2001, 44, 509-16.	2.0	32
119	Molecular mapping of a recessive gene for resistance to stripe rust in barley. Theoretical and Applied Genetics, 2006, 113, 529-537.	3.6	31
120	Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Through Characterization of a Sexual Population with Genotyping-by-Sequencing. Phytopathology, 2018, 108, 133-141.	2.2	31
121	Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f.) Tj ETQq1 19, 664.	1 0.7843 2.8	14 rgBT /Ove 31
122	Inheritance and Molecular Mapping of Barley Genes Conferring Resistance to Wheat Stripe Rust. Phytopathology, 2005, 95, 884-889.	2.2	29
123	A Novel Fungal Hyperparasite of Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. PLoS ONE, 2014, 9, e111484.	2.5	29
124	Virulence Characterization of Wheat Stripe Rust Fungus <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in Ethiopia and Evaluation of Ethiopian Wheat Germplasm for Resistance to Races of the Pathogen from Ethiopia and the United States. Plant Disease, 2017, 101, 73-80.	1.4	29
125	Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici. Frontiers in Microbiology, 2017, 8, 2394.	3.5	29
126	Registration of â€~Xerpha' Wheat. Journal of Plant Registrations, 2010, 4, 137-140.	0.5	29

#	Article	IF	CITATIONS
127	Inheritance and Linkage of Virulence Genes in Chinese Predominant Race CYR32 of the Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2018, 9, 120.	3.6	28
128	Registration of 70 Common Spring Wheat Germplasm Lines Resistant to Stripe Rust. Journal of Plant Registrations, 2012, 6, 104-110.	0.5	28
129	Combining Single Nucleotide Polymorphism Genotyping Array with Bulked Segregant Analysis to Map a Gene Controlling Adult Plant Resistance to Stripe Rust in Wheat Line 03031-1-5 H62. Phytopathology, 2018, 108, 103-113.	2.2	27
130	Inheritance of Stripe Rust Resistance in Wheat Cultivars Postulated to Have Resistance Genes atYr3 andYr4 Loci. Phytopathology, 1993, 83, 382.	2.2	27
131	Introduction: History of Research, Symptoms, Taxonomy of the Pathogen, Host Range, Distribution, and Impact of Stripe Rust. , 2017, , 1-33.		26
132	Registration of â€~Otto' Wheat. Journal of Plant Registrations, 2013, 7, 195-200.	0.5	26
133	A mutagenesis-derived broad-spectrum disease resistance locus in wheat. Theoretical and Applied Genetics, 2012, 125, 391-404.	3.6	25
134	Variability of the Stripe Rust Pathogen. , 2017, , 35-154.		25
135	TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2019, 10, 1679.	3.6	25
136	Virulence and Molecular Diversity of the <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Population in Xinjiang in Relation to Other Regions of Western China. Plant Disease, 2016, 100, 99-107.	1.4	24
137	Comparative virulence phenotypes and molecular genotypes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen in China and the United States. Fungal Biology, 2012, 116, 643-653.	2.5	23
138	Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biology, 2016, 120, 729-744.	2.5	23
139	Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genomics, 2020, 21, 247.	2.8	23
140	Genes for Resistance to Stripe Rust in â€~Tres' Wheat. Crop Science, 1992, 32, 692-696.	1.8	22
141	Genetic Diversity for Stripe Rust Resistance in Wheat Landraces and Identification of Accessions with Resistance to Stem Rust and Stripe Rust. Crop Science, 2014, 54, 2131-2139.	1.8	22
142	Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle and lower reaches of the Yangtze River via genome-wide association study. Plant Science, 2019, 287, 110204.	3.6	22
143	Breeding With Major and Minor Genes: Genomic Selection for Quantitative Disease Resistance. Frontiers in Plant Science, 2021, 12, 713667.	3.6	22
144	Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. Theoretical and Applied Genetics, 2016, 129, 845-859.	3.6	21

#	Article	IF	CITATIONS
145	Registration of â€~Puma' Soft White Winter Wheat. Journal of Plant Registrations, 2014, 8, 273-278.	0.5	21
146	Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in Northwest China. European Journal of Plant Pathology, 2011, 131, 685-693.	1.7	20
147	Genes involved in adult plant resistance to stripe rust in wheat cultivar XingziÂ9104. Physiological and Molecular Plant Pathology, 2013, 81, 26-32.	2.5	20
148	Mapping QTL for Resistance to New Virulent Races of Wheat Stripe Rust from Two Argentinean Wheat Cultivars. Crop Science, 2018, 58, 2470-2483.	1.8	20
149	Development, Validation, and Re-selection of Wheat Lines with Pyramided Genes <i>Yr64</i> and <i>Yr15</i> Linked on the Short Arm of Chromosome 1B for Resistance to Stripe Rust. Plant Disease, 2019, 103, 51-58.	1.4	20
150	Whole-Genome Mapping of Stripe Rust Resistance Quantitative Trait Loci and Race Specificity Related to Resistance Reduction in Winter Wheat Cultivar Eltan. Phytopathology, 2019, 109, 1226-1235.	2.2	20
151	Barley Stripe Rust Resistance QTL: Development and Validation of SNP Markers for Resistance to <i>Puccinia striiformis</i> f. sp. <i>hordei</i> Phytopathology, 2016, 106, 1344-1351.	2.2	19
152	Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20, 640.	2.8	19
153	Genome Sequence Resource of a <i>Puccinia striiformis</i> Isolate Infecting Wheatgrass. Phytopathology, 2019, 109, 1509-1512.	2.2	19
154	Registration of â€~Byrd' Wheat. Journal of Plant Registrations, 2012, 6, 302-305.	0.5	19
155	Genome Sequence Resources for the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) and the Barley Stripe Rust Pathogen (Puccinia striiformis f. sp. hordei). Molecular Plant-Microbe Interactions, 2018, 31, 1117-1120.	2.6	18
156	Transcriptomic Analysis Reveal the Molecular Mechanisms of Wheat Higher-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2018, 9, 240.	3.6	18
157	An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. <i>tritici</i>) Tj ETQq1 2020, 5, .	1 0.78431 2.9	4 rgBT /Over 18
158	Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics, 2021, 22, 34.	2.8	18
159	Identification of a Quantitative Trait Locus for High-Temperature Adult-Plant Resistance Against <i>Puccinia striiformis</i> f. sp. <i>hordei</i> in †Bancroft' Barley. Phytopathology, 2008, 98, 120-127.	2.2	17
160	Expression of high-temperature adult-plant (HTAP) resistance against stripe rust (<i>Puccinia) Tj ETQq0 0 0 rgBT 2012, 34, 68-74.</i>	/Overlock 1.4	10 Tf 50 147 17
161	Novel QTL for Stripe Rust Resistance on Chromosomes 4A and 6B in Soft White Winter Wheat Cultivars. Agronomy, 2016, 6, 4.	3.0	17
162	Molecular Characterization of International Collections of the Wheat Stripe Rust Pathogen <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Reveals High Diversity and Intercontinental Migration. Phytopathology, 2020, 110, 933-942.	2.2	17

#	Article	IF	CITATIONS
163	The RLK protein TaCRK10 activates wheat highâ€ŧemperature seedlingâ€plant resistance to stripe rust through interacting with TaH2A.1. Plant Journal, 2021, 108, 1241-1255.	5.7	17
164	Virulence characterization of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> collections from six countries in 2013 to 2020. Canadian Journal of Plant Pathology, 2021, 43, S308-S322.	1.4	17
165	Effect of Low Temperature and Wheat Winter-Hardiness on Survival of Puccinia striiformis f. sp. tritici under Controlled Conditions. PLoS ONE, 2015, 10, e0130691.	2.5	17
166	Construction of a hexaploid wheat (<i>Triticum aestivum</i> L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance. Genome, 2005, 48, 1028-1036.	2.0	16
167	Molecular Mapping of the rps1.a Recessive Gene for Resistance to Stripe Rust in BBA 2890 Barley. Phytopathology, 2007, 97, 668-673.	2.2	16
168	Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers. Science China Life Sciences, 2010, 53, 1123-1134.	4.9	16
169	Identification and Mapping of Adult Plant Stripe Rust Resistance in Soft Red Winter Wheat VA00Wâ€38. Crop Science, 2013, 53, 871-879.	1.8	16
170	Functional Variation of Plant–Pathogen Interactions: New Concept and Methods for Virulence Data Analyses. Phytopathology, 2019, 109, 1324-1330.	2.2	16
171	Pathogenesis-related protein genes involved in race-specific all-stage resistance and non-race specific high-temperature adult-plant resistance to Puccinia striiformis f. sp. tritici in wheat. Journal of Integrative Agriculture, 2018, 17, 2478-2491.	3.5	15
172	Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a genome-wide association study. Plant Science, 2020, 301, 110688.	3.6	15
173	Resistance to stripe rust in wheat: pathogen biology driving resistance breeding , 2012, , 63-83.		15
174	Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop and Pasture Science, 2012, 63, 606.	1.5	14
175	Differential sensitivity among <i>Puccinia striiformis</i> f. sp. <i>tritici</i> isolates to propiconazole and pyraclostrobin fungicides. Canadian Journal of Plant Pathology, 2019, 41, 415-434.	1.4	14
176	Developing KASP Markers on a Major Stripe Rust Resistance QTL in a Popular Wheat TAM 111 Using 90K Array and Genotypingâ€by‧equencing SNPs. Crop Science, 2019, 59, 165-175.	1.8	14
177	Registration of â€ [~] Antero' Wheat. Journal of Plant Registrations, 2014, 8, 165-168.	0.5	13
178	Ethyl-methanesulfonate mutagenesis generated diverse isolates of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. World Journal of Microbiology and Biotechnology, 2019, 35, 28.	3.6	13
179	Molecular Characterization of Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) Collections from Nine Countries. International Journal of Molecular Sciences, 2021, 22, 9457.	4.1	13
180	Association Analysis of SP-SNPs and Avirulence Genes in <i>Puccinia striiformis</i> f. sp. <i>tritici</i> , the Wheat Stripe Rust Pathogen. American Journal of Plant Sciences, 2016, 07, 126-137.	0.8	13

#	Article	IF	CITATIONS
181	QTL mapping of adult-plant resistance to stripe rust in wheat line P9897. Euphytica, 2015, 205, 243-253.	1.2	12
182	TCAP FACâ€WIN6 Elite Barley GWAS Panel QTL. I. Barley Stripe Rust Resistance QTL in Facultative and Winter Sixâ€Rowed Malt Barley Breeding Programs Identified via GWAS. Crop Science, 2018, 58, 103-119.	1.8	12
183	Registration of â€~Denali' Wheat. Journal of Plant Registrations, 2012, 6, 311-314.	0.5	12
184	Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035. PLoS ONE, 2017, 12, e0177898.	2.5	11
185	Registration of â€~Thunder CL' Wheat. Journal of Plant Registrations, 2009, 3, 181-184.	0.5	11
186	Registration of â€~Brawl CL Plus' Wheat. Journal of Plant Registrations, 2012, 6, 306-310.	0.5	11
187	Gene expression profiling of Puccinia striiformis f. sp. tritici during development reveals a highly dynamic transcriptome. Journal of Genetics and Genomics, 2011, 38, 357-71.	3.9	10
188	Registration of â€~Bill Brown' Wheat. Journal of Plant Registrations, 2008, 2, 218-223.	0.5	10
189	Registration of â€~Cara' Soft White Winter Club Wheat. Journal of Plant Registrations, 2013, 7, 81-88.	0.5	10
190	Determination of the Role of Berberis spp. in Wheat Stem Rust in China. Plant Disease, 2015, 99, 1113-1117.	1.4	9
191	Identification of QTL for adult plant resistance to stripe rust in Chinese wheat landrace Caoxuan 5. Euphytica, 2015, 204, 627-634.	1.2	9
192	Registration of â€~Hilliard' wheat. Journal of Plant Registrations, 2020, 14, 406-417.	0.5	9
193	Identification of a Hyperparasitic Simplicillium obclavatum Strain Affecting the Infection Dynamics of Puccinia striiformis f. sp. tritici on Wheat. Frontiers in Microbiology, 2020, 11, 1277.	3.5	9
194	Genotyping <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Isolates with SSR and SP-SNP Markers Reveals Dynamics of the Wheat Stripe Rust Pathogen in the United States from 1968 to 2009 and Identifies Avirulence-Associated Markers. Phytopathology, 2021, 111, 1828-1839.	2.2	9
195	NBS-LRR Gene <i>TaRPS2</i> is Positively Associated with the High-Temperature Seedling Plant Resistance of Wheat Against <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Phytopathology, 2021, 111, 1449-1458.	2.2	9
196	Registration of â€~Kelseâ€ [™] Wheat. Journal of Plant Registrations, 2009, 3, 269-272.	0.5	9
197	Genome-Wide Association Analysis of Stable Stripe Rust Resistance Loci in a Chinese Wheat Landrace Panel Using the 660K SNP Array. Frontiers in Plant Science, 2021, 12, 783830.	3.6	9
198	TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat. Theoretical and Applied Genetics, 2016, 129, 345-355.	3.6	8

#	Article	IF	CITATIONS
199	Trade-Off Between Triadimefon Sensitivity and Pathogenicity in a Selfed Sexual Population of Puccinia striiformis f. sp. Tritici. Frontiers in Microbiology, 2019, 10, 2729.	3.5	8
200	Revealing Differentially Expressed Genes and Identifying Effector Proteins of Puccinia striiformis f. sp. <i>tritici</i> in Response to High-Temperature Seedling Plant Resistance of Wheat Based on Transcriptome Sequencing. MSphere, 2020, 5, .	2.9	8
201	QTL Analysis of Adult Plant Resistance to Stripe Rust in a Winter Wheat Recombinant Inbred Population. Plants, 2021, 10, 572.	3.5	8
202	Potential Infection Risks of the Wheat Stripe Rust and Stem Rust Pathogens on Barberry in Asia and Southeastern Europe. Plants, 2021, 10, 957.	3.5	8
203	Integrated Control of Stripe Rust. , 2017, , 559-599.		8
204	Registration of the Soft Red Winter Wheat Germplasm MD01W233–06–1 Resistant to Fusarium Head Blight. Journal of Plant Registrations, 2010, 4, 255-260.	0.5	7
205	Wheat-Puccinia striiformis Interactions. , 2017, , 155-282.		7
206	Population Diversity, Dynamics, and Differentiation of Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici From 2010 to 2017 and Comparison With 1968 to 2009 in the United States. Frontiers in Microbiology, 2021, 12, 696835.	3.5	7
207	Field Production, Germinability, and Survival of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Teliospores in China. Plant Disease, 2021, 105, 2122-2128.	1.4	7
208	Novel stripe rust allâ€stage resistance loci identified in a worldwide collection of durum wheat using genomeâ€wide association mapping. Plant Genome, 2021, 14, e20136.	2.8	7
209	GWAS for Stripe Rust Resistance in Wild Emmer Wheat (Triticum dicoccoides) Population: Obstacles and Solutions. Crops, 2022, 2, 42-61.	1.4	7
210	Registration of â€~Pritchett' Soft White Winter Club Wheat. Journal of Plant Registrations, 2017, 11, 152-158.	0.5	6
211	Agronomic Traits in Durum Wheat Germplasm Possessing Puroindoline Genes. Agronomy Journal, 2019, 111, 1254-1265.	1.8	6
212	Registration of â€~UI Stone' Soft White Spring Wheat. Journal of Plant Registrations, 2013, 7, 321-326.	0.5	6
213	Classification and Regression Models for Genomic Selection of Skewed Phenotypes: A Case for Disease Resistance in Winter Wheat (Triticum aestivum L.). Frontiers in Genetics, 2022, 13, 835781.	2.3	6
214	Combination of Marker-Assisted Backcross Selection of Yr59 and Phenotypic Selection to Improve Stripe Rust Resistance and Agronomic Performance in Four Elite Wheat Cultivars. Agronomy, 2022, 12, 497.	3.0	6
215	Registration of â€~TAM 305' Hard Red Winter Wheat. Journal of Plant Registrations, 2015, 9, 325-330.	0.5	5
216	Targeted and efficient transfer of value-added genes into a wheat variety. Molecular Breeding, 2017, 37, 1.	2.1	5

ARTICLE IF CITATIONS Mapping Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 197734 Using a Doubled Haploid Population and Genotyping by Multiplexed Sequencing. Frontiers in Plant Science, 2020, 11, 596962. Stripe Rust Epidemiology., 2017, , 283-352. 218 5 Identifying Loci Conferring Resistance to Leaf and Stripe Rusts in a Spring Wheat Population 219 2.2 (<i>Triticum aestivum</i>) via Genome-Wide Association Mapping. Phytopathology, 2019, 109, 1932-1940. Inheritance of Virulence and Linkages of Virulence Genes in an Ethiopian Isolate of the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) Determined Through Sexual Recombination on 220 1.4 4 Berberis holstii (Retracted). Plant Disease, 2019, 103, 2451-2459. Introgression of <i>rpg4</i>/<i>Rpg5</i> Into Barley Germplasm Provides Insights Into the Genetics of Resistance to <i>Puccinia graminis</i>, f. sp. <i>tritici</i> Race TTKSK and Resources for Developing 2.2 Resistant Cultivars. Phytopathology, 2019, 109, 1018-1028. Genomeâ€wide mapping of resistance to stripe rust caused by Puccinia striiformis f. sp. tritici in 222 1.8 4 hexaploid winter wheat. Crop Science, 2020, 60, 115-131. Registration of â€[™]Whitâ€[™] Wheat. Journal of Plant Registrations, 2009, 3, 279-282. 0.5 Construction and Characterization of a Bacterial Artificial Chromosome Library for the Hexaploid 224 1.9 3 Wheat Line 92R137. BioMed Research International, 2014, 2014, 1-9. Registration of â€~Sprinter' Hard Red Winter Wheat. Journal of Plant Registrations, 2015, 9, 196-200. How â€~Madsen' has shaped Pacific Northwest wheat and beyond. Journal of Plant Registrations, 2020, 226 0.5 3 14, 223-233. Registration of â€[~]Cowboyâ€[™] Wheat. Journal of Plant Registrations, 2014, 8, 169-172. 0.5 Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of 228 Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. International Journal of Molecular 4.1 3 Sciences, 2022, 23, 4114. Constructing Physical and Genomic Maps forPuccinia striiformisf. sp.tritici, the Wheat Stripe Rust Pathogen, by Comparing Its EST Sequences to the Genomic Sequence of P. graminisf. sp.tritici, the Wheat Stem Rust Pathogen. Comparative and Functional Genomics, 2009, 2009, 1-13. Registration of â€~UI SRG' Wheat. Journal of Plant Registrations, 2012, 6, 66-70. 230 0.5 2 Stripe Rust Research and Control: Conclusions and Perspectives., 2017, , 601-630. Registration of †Dayn' Hard White Spring Wheat. Journal of Plant Registrations, 2018, 12, 222-227. 232 0.5 2 Quantitative trait loci for field resistance to barley stripe rust derived from malting line 95SR316A. 1.8 Crop Science, 2020, 60, 1844-1853. Registration of â€~Castella' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 234 0.5 2 504-514.

#	Article	IF	CITATIONS
235	Registration of â€~ARS Crescent' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 515-526.	0.5	2
236	Differential Resistance to Stripe Rust (<i>Puccinia striiformis</i>) in Collections of Basin Wild Rye (<i>Leymus cinereus</i>). Plant Health Progress, 2014, 15, 97-102.	1.4	1
237	Registration of â€~Glee' Hard Red Spring Wheat. Journal of Plant Registrations, 2018, 12, 60-65.	0.5	1
238	Registration of â€~Fritz', a twoâ€row spring barley. Journal of Plant Registrations, 2020, 14, 242-249.	0.5	1
239	Registration of â€~Purl' soft white winter wheat. Journal of Plant Registrations, 2020, 14, 398-405.	0.5	1
240	Registration of â€~KS Hamilton' hard red winter wheat. Journal of Plant Registrations, 2022, 16, 73-79.	0.5	1
241	Registration of MNR434 and MNR527 Wheat Germplasm with New Resistance to Rusts. Journal of Plant Registrations, 2019, 13, 461-464.	0.5	0
242	Registration of â€~Stingray CL+' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 161-171.	0.5	0
243	Registration of â€~Resilience CL+' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 196-205.	0.5	0
244	Registration of â€~Hardy 2519' wheat. Journal of Plant Registrations, 0, , .	0.5	0
245	Changes of Barley Stripe Rust Populations in the Unites States from 1993 to 2017. Phytopathology, 0, , .	2.2	0