Claudio Aguilar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of nanostructured carbon derived from the solid-state reaction between iron and boron carbide. Materials Chemistry and Physics, 2022, 276, 125396.	4.0	8
2	A Tribological and Ion Released Research of Ti-Materials for Medical Devices. Materials, 2022, 15, 131.	2.9	4
3	An Overview of Highly Porous Titanium Processed via Metal Injection Molding in Combination with the Space Holder Method. Metals, 2022, 12, 783.	2.3	8
4	Organic Template-Free Synthesis of Mesoporous ZnO Microparticles by Sol-Gel Method and Low-Temperature Hydrothermal Treatment. Journal of Nanomaterials, 2022, 2022, 1-8.	2.7	0
5	Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules. Sustainability, 2022, 14, 5987.	3.2	8
6	In-situ monitoring of dislocation proliferation during plastic deformation of 304L steel using ultrasound. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143416.	5.6	1
7	Influence of plasma nitriding treatment on the micro-scale abrasive wear behavior of AISI 4140 steel. Materials Letters, 2022, 324, 132629.	2.6	2
8	Evolution of synthesis of FCC nanocrystalline solid solution and amorphous phase in the Ti-Ta based alloy by high milling energy. Journal of Alloys and Compounds, 2021, 854, 155980.	5.5	6
9	Materials analysis applying thermodynamic (MAAT) software: AÂfriendly and free tool to analyze the formation of solid solutions, amorphous phases and intermetallic compounds. Computer Physics Communications, 2021, 259, 107573.	7.5	6
10	A Study on the Phase Formation and Magnetic Properties of FeNiCoCuM (M = Mo, Nb) High-Entropy Alloys Processed Through Powder Metallurgy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1044-1058.	2.2	5
11	Biodepression of Copper-Activated Pyrite with Acidithiobacillus ferrooxidans in Flotation with Fresh and Seawater. Minerals (Basel, Switzerland), 2021, 11, 1039.	2.0	3
12	Composite materials made of waste tires and polyurethane resin: A case study of flexible tiles successfully applied in industry. Case Studies in Construction Materials, 2021, 15, e00681.	1.7	11
13	Evolution of Face-Centered Cubic Ti Alloys Transformation by X-ray Diffraction Profile Analysis in Mechanical Alloying. Metals, 2021, 11, 1841.	2.3	1
14	Semi-empirical computational thermodynamic calculations used to predict carbide dissociation in Fe matrix. Materials Chemistry and Physics, 2020, 240, 122313.	4.0	10
15	Powder Metallurgy Production of Ti-2ÂWtÂPct Si Alloy: Structural, Mechanical, and Electrochemical Characterization of the Sintered Material. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6461-6469.	2.2	2
16	Study of the Effect of the Floating Die Compaction on Mechanical Properties of Titanium Foams. Metals, 2020, 10, 1621.	2.3	3
17	Improving the mechanical strength of ternary beta titanium alloy (Ti-Ta-Sn) foams, using a bimodal microstructure. Materials and Design, 2020, 195, 108945.	7.0	14
18	Tribological Performance of Porous Ti–Nb–Ta–Fe–Mn Alloy in Dry Condition. Materials, 2020, 13, 3284.	2.9	1

#	Article	IF	CITATIONS
19	The effect of Staphylococcus aureus on the electrochemical behavior of porous Ti-6Al-4V alloy. Bioelectrochemistry, 2020, 136, 107622.	4.6	16
20	Analysis of microstructural parameters and quantification of phases in a plasma-nitrided AISI 4140 steel. Philosophical Magazine Letters, 2020, 100, 452-460.	1.2	1
21	Study of silicon carbide dissociation into Fe and Fe C matrixes produced by die pressing and sintering. Materials Chemistry and Physics, 2020, 253, 123442.	4.0	9
22	Effect of Sn on synthesis of nanocrystalline Ti-based alloy with fcc structure. Transactions of Nonferrous Metals Society of China, 2020, 30, 2119-2131.	4.2	8
23	Production of aluminum foams with hierarchical porosity by a combination of two different manufacturing methods. Journal of Alloys and Compounds, 2020, 831, 154780.	5.5	6
24	Effect of Ni addition and cryogenic hardening on the mechanical and tribological properties of self-lubricating steels produced by MIM. Powder Metallurgy, 2020, 63, 163-173.	1.7	2
25	Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid. Materials Science and Engineering C, 2020, 111, 110758.	7.3	13
26	Effect of porosity on mechanical and electrochemical properties of Ti–6Al–4V alloy. Electrochimica Acta, 2020, 338, 135858.	5.2	24
27	Thermodynamic Analysis of the Formation of FCC and BCC Solid Solutions of Ti-Based Ternary Alloys by Mechanical Alloying. Metals, 2020, 10, 510.	2.3	6
28	Effect of hot pressing and hot isostatic pressing on the microstructure, hardness, and wear behavior of nickel. Materials Letters, 2020, 273, 127944.	2.6	6
29	Influence of the synthesis technique on tribological behavior of a Ti-6Al-4V alloy. Materials Letters, 2020, 281, 128627.	2.6	6
30	Estudio de perfiles de difracción de rayos X de una aleación Ti-13Ta-3Sn obtenida por aleado mecánico. Revista Materia, 2020, 25, .	0.2	1
31	Fractal and Conventional Analysis of Cu Content Effect on the Microstructure of Al-Si-Cu-Mg Alloys. Materials Research, 2020, 23, .	1.3	5
32	Synthesis, characterization and mechanical properties of Ti-Nb-Ta-Zr foams for biomedical applications. Materials Today: Proceedings, 2019, 13, 353-361.	1.8	1
33	Production of Agâ^'ZnO powders by hot mechanochemical processing. Transactions of Nonferrous Metals Society of China, 2019, 29, 365-373.	4.2	8
34	Study of the Adhesion Mechanism of Acidithiobacillus ferrooxidans to Pyrite in Fresh and Saline Water. Minerals (Basel, Switzerland), 2019, 9, 306.	2.0	3
35	The influence of mechanical activation process on the microstructure and mechanical properties of bulk Ti2AlN MAX phase obtained by reactive hot pressing. Ceramics International, 2019, 45, 17793-17799.	4.8	18
36	Mechanically enhanced novel Ti-based alloy foams obtained by hot pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 112-123.	5.6	10

#	Article	IF	CITATIONS
37	Structural Study of Novel Nanocrystalline fcc Ti-Ta-Sn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2061-2065.	2.2	12
38	Influence of Porosity on the Elastic Modulus of Ti-Zr-Ta-Nb Foams with a Low Nb Content. Metals, 2019, 9, 176.	2.3	16
39	Effects of Mo Concentration on the Structural and Corrosion Properties of Cu–Alloy. Metals, 2019, 9, 1307.	2.3	4
40	Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites. Journal of Alloys and Compounds, 2019, 777, 309-316.	5.5	68
41	Influence of the Mn content on the TiNbxMn alloys with a novel fcc structure. Journal of Alloys and Compounds, 2018, 746, 601-610.	5.5	7
42	Development of a novel fcc structure for an amorphous-nanocrystalline Ti-33Nb-4Mn (at.%) ternary alloy. Materials Characterization, 2018, 135, 46-56.	4.4	21
43	The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method. Materials Research Express, 2018, 5, 056514.	1.6	4
44	Effect of Heat Treatments and SiC Content in the Mechanical Properties and Microstructure of Self-Lubricating Steels. Materials Research, 2018, 21, .	1.3	4
45	Thermodynamic analysis of Fe contamination in Cu-Mo alloys processed by mechanical alloying. Philosophical Magazine Letters, 2018, 98, 341-349.	1.2	3
46	Linear Versus Nonlinear Acoustic Probing of Plasticity in Metals: A Quantitative Assessment. Materials, 2018, 11, 2217.	2.9	16
47	Synthesis and Electrochemical Properties of Ti-Si Alloys Prepared by Mechanical Alloying and Heat Treatment. Metals, 2018, 8, 417.	2.3	4
48	Evolution of oxide film on the internal porosity of Ti-30Nb-13Ta-2Mn alloy foam. Electrochimica Acta, 2018, 283, 676-682.	5.2	16
49	Effects of Zr on the amorphization of Cu-Ni-Zr alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 2018, 765, 771-781.	5.5	12
50	Structural Characterization of Cu10Mo Alloy Synthesized by Mechanical Alloying. Microscopy and Microanalysis, 2018, 24, 800-801.	0.4	1
51	Un estudio adicional de la cinética de recristalización y crecimiento de grano del acero twip laminado en frÃo. Revista De Metalurgia, 2018, 54, 131.	0.5	3
52	Characterization of Al-Si-Cu-Mg foams manufactured in-situ. Journal of Alloys and Compounds, 2017, 722, 797-808.	5.5	7
53	In situ monitoring of dislocation proliferation during plastic deformation using ultrasound. International Journal of Plasticity, 2017, 97, 178-193.	8.8	19
54	Novel route to synthesize metallic alloys by applying low energy centrifugal field. Physica Status Solidi (B): Basic Research, 2017, 254, 1600641.	1.5	1

#	Article	IF	CITATIONS
55	Study on the microstructural evolution of Ti-Nb based alloy obtained by high-energy ball milling. Journal of Alloys and Compounds, 2017, 720, 254-263.	5.5	54
56	Microstructure and Mechanical Properties of Copper, Nickel and Ternary Alloys Cu-Ni-Zr Obtained by Mechanical Alloying and Hot Pressing. MRS Advances, 2017, 2, 2831-2836.	0.9	11
57	Microstructural and mechanical characterization of copper, nickel, and Cu-based alloys obtained by mechanical alloying and hot pressing. Materials Letters, 2017, 209, 509-512.	2.6	19
58	Characterization of Cu-30Mo Alloys Synthesized by Mechanical Alloying. Microscopy and Microanalysis, 2017, 23, 1944-1945.	0.4	1
59	Obtención del compuesto Mg2Ni0.5Co0.5 mediante aleado mecánico y estudio de su comportamiento frente al proceso de hidruración. DYNA (Colombia), 2017, 84, 240-246.	0.4	1
60	Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying. Ingenieria E Investigacion, 2016, 36, 102.	0.4	4
61	Fractal analysis of the heat treatment response for multiphase Al alloys. Materials Research, 2016, 19, 628-639.	1.3	9
62	Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying. Journal of Alloys and Compounds, 2016, 670, 346-355.	5.5	30
63	A novel solid state method for manufacturing Al foams by over solution heat treatment. Materials Letters, 2016, 174, 6-9.	2.6	7
64	Advances on indirect methods to evaluate tool wear for Radiata pine solid wood molding. Wear, 2016, 350-351, 27-34.	3.1	9
65	Synthesis and characterization of Ti–Ta–Nb–Mn foams. Materials Science and Engineering C, 2016, 58, 420-431.	7.3	37
66	Fabricación de vidrios metálicos base cobre: evolución de las fases durante el procesode aleación mecánica. Revista Materia, 2015, 20, 705-713.	0.2	3
67	Estudio de los cambios microestructurales del Ni al ser sometido a molienda de alta energÃa. Revista Materia, 2015, 20, 621-626.	0.2	3
68	Production and characterisation of mechanical properties of Ti–Nb–Ta–Mn alloys foams for biomedical applications. Powder Metallurgy, 2015, 58, 12-15.	1.7	3
69	Simplified fractal FEA model for the estimation of the Young's modulus of Ti foams obtained by powder metallurgy. Materials and Design, 2015, 83, 276-283.	7.0	18
70	FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites. Composite Structures, 2015, 127, 420-425.	5.8	48
71	DEM–FEA estimation of pores arrangement effect on the compressive Young's modulus for Mg foams. Computational Materials Science, 2015, 110, 281-286.	3.0	16
72	Synthesis and Characterization of Mechanical Alloyed Mg-Ni-Ca and Mg-Cu-Ca Amorphous Alloys. , 2015, 9, 428-434.		2

#	Article	IF	CITATIONS
73	Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying. Materials Chemistry and Physics, 2014, 146, 493-502.	4.0	26
74	Synthesis of Ag–ZnO powders by means of a mechanochemical process. Applied Physics A: Materials Science and Processing, 2014, 117, 871-875.	2.3	12
75	Improvement of FEA estimations for compression behavior of Mg foams based on experimental observations. Computational Materials Science, 2014, 91, 359-363.	3.0	9
76	Relationship between the chemical composition and atomic volume in Ag- x % at Zn (x ≤20) solid solutions. DYNA (Colombia), 2014, 81, 144.	0.4	2
77	Mechanical alloying and subsequent heat treatment of Ag–Zn powders. Transactions of Nonferrous Metals Society of China, 2013, 23, 2071-2078.	4.2	9
78	Degradation of metal–polymer composite submitted to uniaxial deformations in 3.5% NaCl solution. Journal of Adhesion Science and Technology, 2013, 27, 939-950.	2.6	4
79	Estudio de la influencia del Cu y Ni en la cinética de transformación martensÃtica inducida por deformación en fundiciones nodulares austemperadas. Revista De Metalurgia, 2013, 49, 213-222.	0.5	2
80	Effect of mechanical activation on the barite carbothermic reduction. International Journal of Mineral Processing, 2012, 102-103, 124-129.	2.6	16
81	Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 548, 189-194.	5.6	41
82	Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy. Materials Characterization, 2011, 62, 442-450.	4.4	11
83	Simple thermodynamic model of the extension of solid solution of Cu–Mo alloys processed by mechanical alloying. Materials Chemistry and Physics, 2011, 128, 539-542.	4.0	30
84	Structural study by X-ray profile analysis and thermodynamics properties of Cu-Cr and Cu-Mo alloys processed by mechanical alloying. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s154-s154.	0.3	2
85	Thermal stability of amorphous Mg50Ni50 alloy produced by mechanical alloying. Journal of Non-Crystalline Solids, 2010, 356, 120-123.	3.1	13
86	Mechanical alloying of Cu–xCr (x=3, 5 and 8wt.%) alloys. Journal of Alloys and Compounds, 2010, 504, 102-109.	5.5	31
87	Análisis de perfiles de difracción de rayos X de una aleación Cu-8% en peso de Cr obtenida por medio de aleado mecánico. Revista Materia, 2009, 14, 777-786.	0.2	2
88	Indications of the formation of an oversaturated solid solution during hydrogenation of Mg–Ni based nanocomposite produced by mechanical alloying. International Journal of Hydrogen Energy, 2009, 34, 5429-5438.	7.1	16
89	Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying. Journal of Alloys and Compounds, 2009, 471, 336-340.	5.5	27
90	Efecto del tiempo de molienda sobre la estabilidad termica del amorfo Mg ₅₀ Ni ₅₀ producido mediante aleado mecánico. Revista De Metalurgia, 2009, 45, 375-383.	0.5	1

#	Article	IF	CITATIONS
91	Eliminación de arsénico mediante flotación por adsorción coloidal utilizando flóculos de Fe(OH) ₃ en un sistema de flotación por aire disuelto. Revista De Metalurgia, 2009, 45, 85-91.	0.5	1
92	Study and methods of analysis of mechanically alloyed Cu–Mo powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 464, 288-294.	5.6	44
93	Mechanical alloying of Cu–Mo powder mixtures and thermodynamic study of solubility. Materials Letters, 2007, 61, 929-933.	2.6	64
94	A thermodynamic approach to energy storage on mechanical alloying of the Cu–Cr system. Scripta Materialia, 2007, 57, 213-216.	5.2	62
95	Structural study of Cu-Cr mechanical alloying powders. Revista De Metalurgia, 2006, 42, .	0.5	5
96	An Overview of the Interactions Between Reinforcements and Al Matrices with Si, Cu And Mg as Alloying Elements in Aluminum Matrix Composites: Case of Oxide Reinforcements. Materials Research, 0, 25, .	1.3	3
97	Particularities of the Formation and Modification of Si and Mg2si as Second Phases in Casting Al Alloys: Use of Shape Descriptors and Fractal Dimension. Transactions of the Indian Institute of Metals. 0	1.5	2