
Humberto Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Traceable DNA-Replicon Derived Vector to Speed Up Gene Editing in Potato: Interrupting Genes Related to Undesirable Postharvest Tuber Traits as an Example. Plants, 2021, 10, 1882.	3.5	3
2	CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons. Frontiers in Plant Science, 2021, 12, 791030.	3.6	10
3	Trypanosoma cruzi and Toxoplasma gondii Induce a Differential MicroRNA Profile in Human Placental Explants. Frontiers in Immunology, 2020, 11, 595250.	4.8	17
4	Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward. Plants, 2020, 9, 971.	3.5	31
5	Editorial: Leeway to Operate With Plant Genetic Resources. Frontiers in Plant Science, 2020, 11, 911.	3.6	4
6	Physicochemical Parameters Affecting the Distribution and Diversity of the Water Column Microbial Community in the High-Altitude Andean Lake System of La Brava and La Punta. Microorganisms, 2020, 8, 1181.	3.6	18
7	Silencing of one copy of the translation initiation factor elFiso4G in Japanese plum (Prunus salicina) impacts susceptibility to Plum pox virus (PPV) and small RNA production. BMC Plant Biology, 2019, 19, 440.	3.6	13
8	Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture Research, 2019, 6, 58.	6.3	121
9	Agrobacterium-Mediated Transformation of Tree Fruit Crops: Methods, Progress, and Challenges. Frontiers in Plant Science, 2019, 10, 226.	3.6	48
10	A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytologist, 2019, 222, 1673-1684.	7.3	90
11	Grape Biotechnology: Past, Present, and Future. Compendium of Plant Genomes, 2019, , 349-367.	0.5	1
12	Differential Expression Patterns Within the Grapevine Stilbene Synthase Gene Family Revealed Through Their Regulatory Regions. Plant Molecular Biology Reporter, 2018, 36, 225-238.	1.8	14
13	Use of <i>S</i> -alleles and microsatellite genotyping for parental identification and to verify interspecific hybridization in a Chilean <i>Prunus</i> rootstock breeding program. Acta Horticulturae, 2017, , 339-344.	0.2	2
14	An Internetâ€based platform for the estimation of outcrossing potential between cultivated and Chilean vascular plants. Ecology and Evolution, 2017, 7, 2480-2488.	1.9	1
15	Temporary immersion systems for the mass propagation of sweet cherry cultivars and cherry rootstocks: development of a micropropagation procedure and effect of culture conditions on plant quality. In Vitro Cellular and Developmental Biology - Plant, 2017, 53, 494-504.	2.1	13
16	A fast and efficient protocol for small RNA extraction in Japanese plum and other Prunus species. Electronic Journal of Biotechnology, 2017, 30, 103-109.	2.2	3
17	DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.). Tree Physiology, 2017, 37, 1739-1751.	3.1	69
18	ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds. Frontiers in Plant Science, 2017, 8, 812.	3.6	50

Humberto Prieto

#	Article	IF	CITATIONS
19	Candidate nematicidal proteins in a new <i>Pseudomonas veronii</i> isolate identified by its antagonistic properties against <i>Xiphinema index</i> . Journal of General and Applied Microbiology, 2017, 63, 11-21.	0.7	10
20	A draft genome sequence of Pseudomonas veronii R4: a grapevine (Vitis vinifera L.) root-associated strain with high biocontrol potential. Standards in Genomic Sciences, 2016, 11, 76.	1.5	12
21	Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora. Plant Biotechnology Journal, 2016, 14, 625-637.	8.3	11
22	Synthesis of an artificial Vitis vinifera miRNA 319e using overlapping long primers and its application for gene silencing. Journal of Biotechnology, 2016, 233, 200-210.	3.8	11
23	Producción de ácido indol-3-acético por Pseudomonas veronii R4 y formación de raÃces en hojas de vid "Thompson seedless―in vitro. Ciencia Y TecnologÃa, 2016, 9, 31-36.	0.1	1
24	Comparative Study of Two Table Grape Varieties with Contrasting Texture during Cold Storage. Molecules, 2015, 20, 3667-3680.	3.8	17
25	Genetically engineered Thompson Seedless grapevine plants designed for fungal tolerance: selection and characterization of the best performing individuals in a field trial. Transgenic Research, 2015, 24, 43-60.	2.4	18
26	Biochemical and physiological study of the firmness of table grape berries. Postharvest Biology and Technology, 2014, 93, 15-23.	6.0	46
27	Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge. Virus Genes, 2014, 49, 325-338.	1.6	15
28	Molecular characterization of the chalcone isomerase gene family in Deschampsia antarctica. Polar Biology, 2013, 36, 1269-1280.	1.2	12
29	Production of phenolic metabolites by Deschampsia antarctica shoots using UV-B treatments during cultivation in a photobioreactor. Electronic Journal of Biotechnology, 2012, 15, .	2.2	6
30	Expression of an optimized Argopecten purpuratus antimicrobial peptide in E. coli and evaluation of the purified recombinant protein by in vitro challenges against important plant fungi. Peptides, 2011, 32, 1909-1916.	2.4	6
31	Antioxidant responses of <i>in vitro</i> shoots of <i>Deschampsia antarctica</i> to Polyethylene glycol treatment. Antarctic Science, 2010, 22, 163-169.	0.9	10
32	Evaluation of the Resistance of Transgenic C5 Plum (Prunus domestica L.) against Four Chilean Plum Pox Virus Isolates through Micro-Grafting. Chilean Journal of Agricultural Research, 2010, 70, .	1.1	7
33	Development of grapevine somatic embryogenesis using an air-lift bioreactor as an efficient tool in the generation of transgenic plants. Journal of Biotechnology, 2009, 139, 95-101.	3.8	16
34	Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Reports, 2008, 27, 1333-1340.	5.6	44
35	Effect of Harvest Time and L-Cysteine as an Antioxidant on Flesh Browning of Fresh-Cut Cherimoya (Annona cherimola Mill.). Chilean Journal of Agricultural Research, 2008, 68, .	1.1	9
36	Browning in <i>Annona cherimola</i> Fruit: Role of Polyphenol Oxidase and Characterization of a Coding Sequence of the Enzyme. Journal of Agricultural and Food Chemistry, 2007, 55, 9208-9218.	5.2	27

HUMBERTO PRIETO

#	Article	IF	CITATIONS
37	Biological Behavior and Partial Molecular Characterization of Six Chilean Isolates of Plum pox virus. Plant Disease, 2003, 87, 15-20.	1.4	15
38	Isolation and Molecular Characterization of a Chilean Isolate of Zucchini yellow mosaic virus. Plant Disease, 2001, 85, 644-648.	1.4	16
39	Citrus limon seedlings without functional chloroplasts are unable to induce phenylalanine ammonia-lyase in response to inoculation with Alternaria alternata. Journal of Plant Physiology, 1997, 150, 645-651.	3.5	1
40	Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophysical Journal, 1995, 68, 507-515.	0.5	88
41	Genetic Transformation Strategies in Fruit Crops. , 0, , .		9
42	Gene Editing in Prunus Spp.: The Challenge of Adapting Regular Gene Transfer Procedures for Precision Breeding. , 0, , .		2
43	Title is missing!. , 0, , .		Ο