
David A Six

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708487/publications.pdf Version: 2024-02-01

Ολυίο Α Six

#	Article	IF	CITATIONS
1	Fluorescent sensors of siderophores produced by bacterial pathogens. Journal of Biological Chemistry, 2022, 298, 101651.	1.6	12
2	Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chemical Reviews, 2021, 121, 5193-5239.	23.0	64
3	The Next-Generation β-Lactamase Inhibitor Taniborbactam Restores the Morphological Effects of Cefepime in KPC-Producing Escherichia coli. Microbiology Spectrum, 2021, 9, e0091821.	1.2	5
4	VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-Î ² -Lactamases, Restores Activity of Cefepime in <i>Enterobacterales</i> and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	123
5	Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes. Journal of Lipid Research, 2020, 61, 870-883.	2.0	11
6	Defects in Efflux (<i>oprM</i>), β-Lactamase (<i>ampC</i>), and Lipopolysaccharide Transport () Tj ETQq0 0 0 Z61. Antimicrobial Agents and Chemotherapy, 2019, 63, .	rgBT /Ove 1.4	rlock 10 Tf 5 7
7	Development and Optimization of a Higher-Throughput Bacterial Compound Accumulation Assay. ACS Infectious Diseases, 2019, 5, 394-405.	1.8	19
8	Advances and challenges in bacterial compound accumulation assays for drug discovery. Current Opinion in Chemical Biology, 2018, 44, 9-15.	2.8	35
9	Molecular Probes for the Determination of Subcellular Compound Exposure Profiles in Gram-Negative Bacteria. ACS Infectious Diseases, 2018, 4, 1355-1367.	1.8	17
10	The sialic acid transporter NanT is necessary and sufficient for uptake of 3â€deoxyâ€ <scp>d</scp> â€ <i>manno</i> â€octâ€2â€ulosonic acid (Kdo) and its azido analog in <i>Escherichia coli</i> . Molecular Microbiology, 2018, 110, 204-218.	1.2	19
11	A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii. PLoS ONE, 2018, 13, e0193851.	1.1	13
12	Subcellular Chemical Imaging of Antibiotics in Single Bacteria Using C ₆₀ -Secondary Ion Mass Spectrometry. Analytical Chemistry, 2017, 89, 5050-5057.	3.2	71
13	Molecular characterization and verification of azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid incorporation into bacterial lipopolysaccharide. Journal of Biological Chemistry, 2017, 292, 19840-19848.	1.6	25
14	Characterization of an Acinetobacter baumannii <i>lptD</i> Deletion Strain: Permeability Defects and Response to Inhibition of Lipopolysaccharide and Fatty Acid Biosynthesis. Journal of Bacteriology, 2016, 198, 731-741.	1.0	57
15	Deletion of the β-Acetoacetyl Synthase FabY in Pseudomonas aeruginosa Induces Hypoacylation of Lipopolysaccharide and Increases Antimicrobial Susceptibility. Antimicrobial Agents and Chemotherapy, 2014, 58, 153-161.	1.4	10
16	Complex transcriptional and postâ€ŧranscriptional regulation of an enzyme for lipopolysaccharide modification. Molecular Microbiology, 2013, 89, 52-64.	1.2	45
17	Pathogenicity of Yersinia pestis Synthesis of 1-Dephosphorylated Lipid A. Infection and Immunity, 2013, 81, 1172-1185.	1.0	24
18	Phosphate Groups of Lipid A Are Essential for Salmonella enterica Serovar Typhimurium Virulence and Affect Innate and Adaptive Immunity. Infection and Immunity, 2012, 80, 3215-3224.	1.0	70

DAVID A SIX

#	Article	IF	CITATIONS
19	Density gradient enrichment of Escherichia coli lpxL mutants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 989-993.	1.2	1
20	A live attenuated strain of Yersinia pestis KIM as a vaccine against plague. Vaccine, 2011, 29, 2986-2998.	1.7	41
21	Lipopolysaccharide (LPS) Inner-Core Phosphates Are Required for Complete LPS Synthesis and Transport to the Outer Membrane in Pseudomonas aeruginosa PAO1. MBio, 2011, 2, .	1.8	50
22	Palmitoylation State Impacts Induction of Innate and Acquired Immunity by the Salmonella enterica Serovar Typhimurium <i>msbB</i> Mutant. Infection and Immunity, 2011, 79, 5027-5038.	1.0	42
23	Correction: Salmonella Synthesizing 1-Monophosphorylated Lipopolysaccharide Exhibits Low Endotoxic Activity while Retaining Its Immunogenicity. Journal of Immunology, 2011, 187, 3449-3449.	0.4	6
24	<i>Salmonella</i> Synthesizing 1-Monophosphorylated Lipopolysaccharide Exhibits Low Endotoxic Activity while Retaining Its Immunogenicity. Journal of Immunology, 2011, 187, 412-423.	0.4	66
25	Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research, 2010, 51, 3299-3305.	2.0	1,071
26	Purification and Characterization of the Lipid A 1-Phosphatase LpxE of Rhizobium leguminosarum. Journal of Biological Chemistry, 2009, 284, 414-425.	1.6	30
27	Uridine-Based Inhibitors as New Leads for Antibiotics Targeting <i>Escherichia coli</i> LpxC. Biochemistry, 2009, 48, 3068-3077.	1.2	46
28	Discovery of new biosynthetic pathways: the lipid A story. Journal of Lipid Research, 2009, 50, S103-S108.	2.0	178
29	Purification and Mutagenesis of LpxL, the Lauroyltransferase of <i>Escherichia coli</i> Lipid A Biosynthesis. Biochemistry, 2008, 47, 8623-8637.	1.2	42
30	A New Link in the Biosynthesis and Transport of Lipid A ―Interaction of MsbA and LpxK. FASEB Journal, 2008, 22, 815.2.	0.2	0
31	Structureâ^'Activity Relationship of 2-Oxoamide Inhibition of Group IVA Cytosolic Phospholipase A ₂ and Group V Secreted Phospholipase A ₂ . Journal of Medicinal Chemistry, 2007, 50, 4222-4235.	2.9	66
32	Differential Inhibition of Group IVA and Group VIA Phospholipases A2 by 2-Oxoamides. Journal of Medicinal Chemistry, 2006, 49, 2821-2828.	2.9	41
33	Synthesis and activity of 2-oxoamides containing long chain Î ² -amino acids. Journal of Peptide Science, 2005, 11, 431-435.	0.8	22
34	Inhibition of Group IVA Cytosolic Phospholipase A2by Novel 2-Oxoamides in Vitro, in Cells, and in Vivo. Journal of Medicinal Chemistry, 2004, 47, 3615-3628.	2.9	92
35	In Vivo Phospholipase Activity of the Pseudomonas aeruginosa Cytotoxin ExoU and Protection of Mammalian Cells with Phospholipase A2 Inhibitors. Journal of Biological Chemistry, 2003, 278, 41326-41332.	1.6	172
36	Essential Ca2+-independent Role of the Group IVA Cytosolic Phospholipase A2 C2 Domain for Interfacial Activity. Journal of Biological Chemistry, 2003, 278, 23842-23850.	1.6	69

DAVID A SIX

#	Article	IF	CITATIONS
37	Novel 2-Oxoamide Inhibitors of Human Group IVA Phospholipase A2. Journal of Medicinal Chemistry, 2002, 45, 2891-2893.	2.9	72
38	The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1488, 1-19.	1.2	1,171
39	Group IV Cytosolic Phospholipase A2 Binds with High Affinity and Specificity to Phosphatidylinositol 4,5-Bisphosphate Resulting in Dramatic Increases in Activity. Journal of Biological Chemistry, 1998, 273, 2184-2191.	1.6	166