Ying Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708406/publications.pdf Version: 2024-02-01

YING WANG

#	Article	IF	CITATIONS
1	Metalâ€Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1703455.	7.8	597
2	A Freestanding 3D Heterostructure Film Stitched by MOFâ€Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn–Air Batteries. Advanced Materials, 2020, 32, e2003313.	11.1	216
3	High oxygen reduction activity on a metal–organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. Journal of Materials Chemistry A, 2017, 5, 789-795.	5.2	171
4	Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 1682-1691.	5.2	168
5	Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. Journal of Materials Chemistry A, 2017, 5, 22372-22379.	5.2	159
6	In Situ Synthesis Strategy for Hierarchically Porous Ni ₂ P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.	4.0	158
7	Lattice Matching Growth of Conductive Hierarchical Porous MOF/LDH Heteronanotube Arrays for Highly Efficient Water Oxidation. Advanced Materials, 2021, 33, e2006351.	11.1	155
8	Competitive Coordinationâ€Oriented Monodispersed Ruthenium Sites in Conductive MOF/LDH Heteroâ€Nanotree Catalysts for Efficient Overall Water Splitting in Alkaline Media. Advanced Materials, 2022, 34, e2107488.	11.1	103
9	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	3.2	85
10	ZnIn2S4 decorated Co-doped NH2-MIL-53(Fe) nanocomposites for efficient photocatalytic hydrogen production. Applied Surface Science, 2020, 517, 146161.	3.1	54
11	Superstructure of a Metal–Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano, 2019, 13, 2901-2912.	7.3	47
12	One-step and scalable synthesis of Ni2P nanocrystals encapsulated in N,P-codoped hierarchically porous carbon matrix using a bipyridine and phosphonate linked nickel metal–organic framework as highly efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 297, 755-766.	2.6	44
13	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	4.8	33
14	Solvothermal Metal Metathesis on a Metal–Organic Framework with Constricted Pores and the Study of Gas Separation. ACS Applied Materials & Interfaces, 2015, 7, 25402-25412.	4.0	18
15	Hierarchical growth of vertically standing Fe3O4-FeSe/CoSe2 nano-array for high effective oxygen evolution reaction. Materials Research Bulletin, 2020, 122, 110680.	2.7	17
16	Amide-Functionalized Metal–Organic Frameworks Coupled with Open Fe/Sc Sites for Efficient Acetylene Purification. Inorganic Chemistry, 2021, 60, 18473-18482.	1.9	8