
Alina I Mytareva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708154/publications.pdf Version: 2024-02-01

Διινία Ι Μυτάρενια

#	Article	IF	CITATIONS
1	Removal of VOCs by Ozone: n-Alkane Oxidation under Mild Conditions. Catalysts, 2021, 11, 506.	3.5	10
2	Improvement of Low-Temperature Activity of FeBeta Monolith Catalyst in NH3-SCR of NOx. Topics in Catalysis, 2019, 62, 86-92.	2.8	10
3	The Role of Protons and Formation Cu(NH3)2+ During Ammonia-Assisted Solid-State Ion Exchange of Copper(I) Oxide into Zeolites. Topics in Catalysis, 2019, 62, 100-107.	2.8	13
4	FeBeta [Mn–Ce/Ce0.75Zr0.25O2 + FeBeta] Dual-Bed Catalyst for the Efficient Synergistic Removal o NOx, CO, C4H10, and NH3-Slip. Topics in Catalysis, 2019, 62, 192-197.	of 2.8	6
5	Detailed Study of Cu Migration in the Course of NH3-Facilitated Solid-State Ion-Exchange into *BEA Zeolites. Topics in Catalysis, 2017, 60, 255-259.	2.8	9
6	New Insights into the Mechanism of Synergistic Effect for [CeO2–ZrO2Â+ÂH-Beta] CombiCat in NH3–SCR. Topics in Catalysis, 2016, 59, 919-924.	2.8	9
7	Composite catalysts for selective catalytic reduction of NO x and oxidation of residual NH3. Petroleum Chemistry, 2016, 56, 211-216.	1.4	8
8	In situ XPS study of the size effect in the interaction of NO with the surface of the model Ag/Al2O3/FeCrAl catalysts. Russian Chemical Bulletin, 2015, 64, 2780-2785.	1.5	14
9	Combined catalytic systems for enhanced low-temperature NO abatement. Catalysis Today, 2015, 258, 183-189.	4.4	24
10	Combined NOx Selective Catalytic Reduction and NH3-slip Oxidation Activity of Composite [Fe-Beta + Fe(Mn)MCM-48] Catalysts. Mendeleev Communications, 2014, 24, 313-315.	1.6	6
11	Fast and Standard Selective Catalytic Reduction in NH3-DeNOx: Pathways Discrimination as a Key Step for the Understanding of Kinetics. Mendeleev Communications, 2014, 24, 311-312.	1.6	6
12	Contribution of (NO3 â^)surf Reduction to the Overall Mechanism of H2-Promoted n-C6H14-DeNOx Over Ag/Al2O3. Topics in Catalysis, 2013, 56, 187-192.	2.8	4
13	Empirical relationships between crude-oil characteristics. Chemistry and Technology of Fuels and Oils, 2012, 48, 403-408.	0.5	0
14	Carbamide-containing complexes of lanthanides: competition of hydrogen bonding and polyiodide ion formation. Mendeleev Communications, 2011, 21, 204-205.	1.6	6
15	Mechanism of H2-promoted oxidation of nitrogen monoxide over Ag/Al2O3. Mendeleev Communications, 2011, 21, 274-276.	1.6	2