Kinga Stuper-Szablewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6707870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of light conditions on the content of selected active ingredients in anatomical parts of the oyster mushroom (Pleurotus ostreatus L.). PLoS ONE, 2022, 17, e0262279.	1.1	12
2	Concentration of Pro-Health Compound of Sorghum Grain-Based Foods. Foods, 2022, 11, 216.	1.9	9
3	The Effects of Protease Supplementation and Faba Bean Extrusion on Growth, Gastrointestinal Tract Physiology and Selected Blood Indices of Weaned Pigs. Animals, 2022, 12, 563.	1.0	4
4	Assessment of Antimicrobial Properties of Phenolic Acid Extracts from Grain Infected with Fungi from the Genus Fusarium. Molecules, 2022, 27, 1741.	1.7	10
5	Comprehensive Assessment of Environmental Pollution in a Poultry Farm Depending on the Season and the Laying Hen Breeding System. Animals, 2022, 12, 740.	1.0	1
6	An Analysis of Variability in the Content of Phenolic Acids and Flavonoids in Camelina Seeds Depending on Weather Conditions, Functional Form, and Genotypes. Molecules, 2022, 27, 3364.	1.7	4
7	Genoprotective effect of cornelian cherry (Cornus mas L.) phytochemicals, electrochemical and ab initio interaction study. Biomedicine and Pharmacotherapy, 2022, 152, 113216.	2.5	3
8	Encapsulated Bioactive Ingredients of grape byâ€products applicate in freshâ€cut fruit and juices diminished the ochratoxins. Journal of Food Processing and Preservation, 2021, 45, e15112.	0.9	19
9	Influence of variety and weather conditions on fatty acid composition of winter and spring Camelina sativa varieties in Poland. European Food Research and Technology, 2021, 247, 465-473.	1.6	15
10	Effect of laying hens age and housing system on physicochemical characteristics of eggs. Annals of Animal Science, 2021, 21, 291-309.	0.6	6
11	Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains. Agronomy, 2021, 11, 151.	1.3	8
12	Can cornelian cherry mask bitter taste of probiotic chocolate? Human TAS2R receptors and a sensory study with comprehensive characterisation of new functional product. PLoS ONE, 2021, 16, e0243871.	1.1	7
13	The Content of Biologically Active Substances in Crocosmia × crocosmiiflora â€~Lucifer' Tubers after Treatment with GA3. Agronomy, 2021, 11, 553.	1.3	3
14	Efficiency of Machine Sanding of Wood. Applied Sciences (Switzerland), 2021, 11, 2860.	1.3	15
15	Comparative Analysis of Infusions with the Addition P. padus Bark: Assessment of the Antioxidant Potential and Their Inhibitory Effect on Enzymes Associated with Oxidative Stress. Sustainability, 2021, 13, 3913.	1.6	1
16	Sambucus Nigra Extracts–Natural Antioxidants and Antimicrobial Compounds. Molecules, 2021, 26, 2910.	1.7	38
17	Comprehensive study on the antioxidant capacity and phenolic profiles of black seed and other spices and herbs: effect of solvent and time of extraction. Journal of Food Measurement and Characterization, 2021, 15, 4561-4574.	1.6	26
18	Fine Dust Creation during Hardwood Machine Sanding. Applied Sciences (Switzerland), 2021, 11, 6602.	1.3	16

KINGA STUPER-SZABLEWSKA

#	Article	IF	CITATIONS
19	Relationship of colour with the phytocompounds present in <i>Cornus mas</i> cultivars. International Journal of Food Properties, 2021, 24, 400-414.	1.3	4
20	Prospective antimycotoxigenic action of wild Opuntia ficus-indica by-products. Czech Journal of Food Sciences, 2021, 38, 308-314.	0.6	8
21	A Possibility to Use Selected Crop Post-Extraction Wastes to Improve the Composition of Cultivated Mushroom Pleurotus citrinopileatus. Journal of Fungi (Basel, Switzerland), 2021, 7, 894.	1.5	3
22	The profile of bioactive compounds in the grain of various x Tritordeum genotypes. Journal of Cereal Science, 2021, 102, 103352.	1.8	9
23	Bioactive Molecules of Mandarin Seed Oils Diminish Mycotoxin and the Existence of Fungi. Molecules, 2021, 26, 7130.	1.7	5
24	Management of post-production wood waste in the aspect of circular economy. Annals of WULS Forestry and Wood Technology, 2021, 115, 72-76.	0.0	0
25	The Dynamics of Mycobiota Development in Various Types of Wood Dust Depending on the Dust Storage Conditions. Forests, 2021, 12, 1786.	0.9	4
26	The phytochemical quality of <i>Camelina sativa</i> seed and oil. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 39-47.	0.3	9
27	The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers Journal of Food Science and Technology, 2020, 57, 513-525.	1.4	42
28	The influence of weather conditions on bioactive compound content in sorghum grain. European Food Research and Technology, 2020, 246, 13-22.	1.6	29
29	A Chemometric Approach to Oxidative Stability and Physicochemical Quality of Raw Ground Chicken Meat Affected by Black Seed and Other Spice Extracts. Antioxidants, 2020, 9, 903.	2.2	18
30	Exploring antimicrobial and antioxidant properties of phytocomponents from different anatomical parts of <i>Prunus padus</i> L. International Journal of Food Properties, 2020, 23, 2097-2109.	1.3	6
31	Influence of Grit Size and Wood Species on the Granularity of Dust Particles during Sanding. Applied Sciences (Switzerland), 2020, 10, 8165.	1.3	21
32	Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules, 2020, 25, 3527.	1.7	30
33	Concentrations of Phenolic Acids, Flavonoids and Carotenoids and the Antioxidant Activity of the Grain, Flour and Bran of Triticum polonicum as Compared with Three Cultivated Wheat Species. Agriculture (Switzerland), 2020, 10, 591.	1.4	19
34	Phenolic Compounds in Trees and Shrubs of Central Europe. Applied Sciences (Switzerland), 2020, 10, 6907.	1.3	26
35	Bacteria Associated with Winter Wheat Degrade Fusarium Mycotoxins and Triazole Fungicide Residues. Agronomy, 2020, 10, 1673.	1.3	8
36	Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, Deoxynivalenol, and Nivalenol in Winter Wheat Grain. Agriculture (Switzerland), 2020, 10, 127.	1.4	18

#	Article	IF	CITATIONS
37	Winter camelina seeds as a raw material for the production of erucic acid-free oil. Food Chemistry, 2020, 330, 127265.	4.2	16
38	New Interspecific Brassica Hybrids with High Levels of Heterosis for Fatty Acids Composition. Agriculture (Switzerland), 2020, 10, 221.	1.4	4
39	Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: Electrochemical and spectrophotometric approach and their antimicrobial properties. Open Chemistry, 2020, 18, 1125-1135.	1.0	12
40	Yeasts Isolated from Wheat Grain Can Suppress Fusarium Head Blight and Decrease Trichothecene Concentrations in Bread Wheat and Durum Wheat Grain. Polish Journal of Environmental Studies, 2020, 29, 4345-4360.	0.6	11
41	The accuracy of holes drilled in the side surface of plywood. BioResources, 2020, 15, 117-129.	0.5	11
42	Variation in the morphometric parameters of seeds of spring and winter genotypes of Camelina sativa (L.) Crantz. Industrial Crops and Products, 2019, 139, 111571.	2.5	5
43	Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy, 2019, 9, 168.	1.3	39
44	Performance of Winter Wheat Cultivars Grown Organically and Conventionally with Focus on Fusarium Head Blight and Fusarium Trichothecene Toxins. Microorganisms, 2019, 7, 439.	1.6	5
45	Production of Bioactive Compounds by Food Associated Galactomyces geotrichum 38, as Determined by Proteome Analysis. Nutrients, 2019, 11, 471.	1.7	1
46	Quantitative profile of phenolic acids and antioxidant activity of wheat grain exposed to stress. European Food Research and Technology, 2019, 245, 1595-1603.	1.6	25
47	The influence of the conditions of acquisition and storage of table eggs on changes in their quality and the presence of mycobiota and Fusarium mycotoxins. Poultry Science, 2019, 98, 2964-2971.	1.5	13
48	Organic acid profile and phenolic and sugar content in <i>Salix purpurea × viminalis</i> L.Âcultivated with different spent mushroom substrate and copper additions. Chemistry and Ecology, 2019, 35, 191-203.	0.6	1
49	Bioactive compounds in sorghum. European Food Research and Technology, 2019, 245, 1075-1080.	1.6	48
50	Phenolic acids in cereal grain: Occurrence, biosynthesis, metabolism and role in living organisms. Critical Reviews in Food Science and Nutrition, 2019, 59, 664-675.	5.4	42
51	Resistance-Related l-Pyroglutamic Acid Affects the Biosynthesis of Trichothecenes and Phenylpropanoids by F. graminearum Sensu Stricto. Toxins, 2018, 10, 492.	1.5	7
52	Effect of self-heating on the processing quality of rapeseed. International Agrophysics, 2018, 32, 313-323.	0.7	8
53	Characterisation of the Mycobiota on the Shell Surface of Table Eggs Acquired from Different Egg-Laying Hen Breeding Systems. Toxins, 2018, 10, 293.	1.5	23
54	Changes in Phenylpropanoid and Trichothecene Production by Fusarium culmorum and F. graminearum Sensu Stricto via Exposure to Flavonoids. Toxins, 2018, 10, 110.	1.5	32

#	Article	IF	CITATIONS
55	Ammonium bio-ionic liquids based on camelina oil as potential novel agrochemicals. RSC Advances, 2018, 8, 28676-28683.	1.7	24
56	Phenolic compounds in leaves of <i>Salix</i> species and hybrids growing under different soil conditions. Chemistry and Ecology, 2017, 33, 196-212.	0.6	21
57	Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents. Arhiv Za Higijenu Rada I Toksikologiju, 2017, 68, 127-134.	0.4	10
58	Response of non-enzymatic antioxidative mechanisms to stress caused by infection with <i>Fusarium</i> fungi and chemical protection in different wheat genotypes. Chemistry and Ecology, 2017, 33, 949-962.	0.6	27
59	trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto. Toxins, 2017, 9, 198.	1.5	22
60	Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto. Toxins, 2017, 9, 264.	1.5	17
61	Level of contamination with mycobiota and contents of mycotoxins from the group of trichothecenes in grain of wheat , oats, barley, rye and triticale harvested in Poland in 2006–2008. Annals of Agricultural and Environmental Medicine, 2017, 24, 49-55.	0.5	7
62	Olej rydzowy jako naturalne źródÅ,o karotenoidów dla przemysÅ,u kosmetycznego. Przemysl Chemiczny, 2017, 1, 75-78.	0.0	2
63	Kwas ferulowy. WÅ,aÅ›ciwoÅ›ci, oznaczanie i zastosowanie w przemyÅ›le kosmetycznym. Przemysl Chemiczny, 2017, 1, 68-74.	0.0	1
64	Comparison of Volatiles Profile and Contents of Trichothecenes Group B, Ergosterol, and ATP of Bread Wheat, Durum Wheat, and Triticale Grain Naturally Contaminated by Mycobiota. Frontiers in Plant Science, 2016, 7, 1243.	1.7	17
65	Study of metabolite profiles in winter wheat cultivars induced by Fusarium infection. Cereal Research Communications, 2016, 44, 572-584.	0.8	4
66	Changes in contents of trichothecenes during commercial grain milling. LWT - Food Science and Technology, 2016, 69, 55-58.	2.5	11
67	Concentration of fungal metabolites, phenolic acids and metals in mixtures of cereals grown in organic and conventional farms. Journal of Animal and Feed Sciences, 2016, 25, 74-81.	0.4	7
68	Wheat grain contaminated by microscopic fungi as a source of phenolic acids for potential application in the pharmaceutical industry Zanieczyszczone grzybami mikroskopowymi ziarno pszenicy jako ŰródÅ,o kwasów fenolowych o potencjalnym zastosowaniu w przemyÅ›le farmaceutycznym. Przemysl Chemiczny, 2016 1 187-190	0.0	0
69	Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars. Plant Pathology Journal, 2015, 31, 226-244.	0.7	11
70	The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi. Food Chemistry, 2014, 153, 216-223.	4.2	19
71	Contamination of wheat grain with microscopic fungi and their metabolites in Poland in 2006–2009. Annals of Agricultural and Environmental Medicine, 2014, 21, 504-509.	0.5	5
72	DETERMINATION OF CORRELATIONS BETW EEN CONTENT OF MANGANESE IN NUTRIENT SOLUTION AND CONCENTRATION OF TRACE ELEMENTS IN TOMATO FRUITS (LYCOPERSICON ESCULENTUM MILL.). Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, , .	0.1	1

#	Article	IF	CITATIONS
73	Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 69-81.	0.7	42
74	Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 308-317.	0.7	12
75	MINERAL COMPOSITION OF CONTENTS IN TABLE EGGS FROM AUTOCHTHONOUS HEN BREEDS BRED UNDER ECOLOGICAL CONDITIONS. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2013, 5, .	0.1	3
76	A comparison of contents of group A and B trichothecenes and microbial counts in different cereal species. Food Additives and Contaminants: Part B Surveillance, 2012, 5, 151-159.	1.3	10
77	Differences in metabolomic profiles of the naturally contaminated grain of barley, oats and rye. Journal of Cereal Science, 2012, 56, 544-551.	1.8	20
78	Microscopic fungi in eggs of ring-necked pheasants kept in aviaries. Poultry Science, 2011, 90, 2467-2470.	1.5	7
79	Volatile metabolites in various cereal grains. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 1574-1581.	1.1	53
80	Ergosterol as an indicator of the presence of microscopic fungi in eggs for human consumption produced in different husbandry systems. Poultry Science, 2010, 89, 2491-2493.	1.5	6
81	Concentration of ergosterol in small-grained naturally contaminated and inoculated cereals. Biologia (Poland), 2008, 63, 542-547.	0.8	43
82	Kinetics of fungal metabolites formation after inoculation of wheat spikes with <i>F. culmorum</i> . Cereal Research Communications, 2008, 36, 443-449.	0.8	5
83	Characterization of HMW-GS genes Dx5 ^t and Dy12 ^t from <i>Aegilops tauschii</i> accession with subunit combination Dx5 ^t + Dy12 ^t . Cereal Research Communications, 2008, 36, 477-487.	0.8	5