
Xiaoshuang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6707819/publications.pdf Version: 2024-02-01

XIAOSHIJANG ZHOU

#	Article	lF	CITATIONS
1	Oxygen-tailoring in SiO _{<i>X</i>} /C with a covalent interface for high-performance lithium storage. Journal of Materials Chemistry A, 2022, 10, 1928-1939.	5.2	13
2	A wide-temperature-range sensor based on wide-strain-range self-healing and adhesive organogels. New Journal of Chemistry, 2022, 46, 4334-4342.	1.4	4
3	Graphene Oxide Aerogel Foam Constructed All-Solid Electrolyte Membranes for Lithium Batteries. Langmuir, 2022, 38, 3257-3264.	1.6	8
4	3D TM-N-C Electrocatalysts with Dense Active Sites for the Membraneless Direct Methanol Fuel Cell and Zn-Air Batteries. Langmuir, 2022, 38, 4948-4957.	1.6	10
5	Fast Largeâ€Stroke Sheathâ€Driven Electrothermal Artificial Muscles with High Power Densities. Advanced Functional Materials, 2022, 32, .	7.8	21
6	A multifunctional zipper-like sulfur electrode enables the stable operation of lithium-sulfur battery through self-healing chemistry. Energy Storage Materials, 2021, 34, 755-767.	9.5	18
7	Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring. New Journal of Chemistry, 2021, 45, 314-320.	1.4	25
8	Defect mitigation using <scp>d</scp> -penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12, 2050-2059.	3.7	88
9	Fast polysulfide catalytic conversion and self-repairing ability for high loading lithium–sulfur batteries using a permselective coating layer modified separator. Nanoscale, 2021, 13, 17592-17602.	2.8	5
10	Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science, 2021, 371, 494-498.	6.0	110
11	Electrical energy generation by squeezing a graphene-based aerogel in an electrolyte. Nanoscale, 2021, 13, 8304-8312.	2.8	8
12	O,N-Codoped 3D graphene hollow sphere derived from metal–organic frameworks as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13, 6174-6183.	2.8	17
13	Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells. Journal of Materials Chemistry A, 2021, 9, 21939-21947.	5.2	19
14	Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property. ACS Applied Materials & Interfaces, 2021, 13, 7705-7713.	4.0	25
15	Graphene-based fibers for the energy devices application: A comprehensive review. Materials and Design, 2021, 201, 109476.	3.3	32
16	Carbon Nanotube Hybrid Yarn with Mechanically Strong Healable Silicone Elastomers for Artificial Muscle. ACS Applied Nano Materials, 2021, 4, 5123-5130.	2.4	16
17	A highly sensitive piezoresistive sensor based on CNT-rGO aerogel for human motion detection. Journal of Composite Materials, 2021, 55, 3661-3669.	1.2	7
18	Stable High-Performance Perovskite Solar Cells via Passivation of the Grain Boundary and Interface. ACS Applied Energy Materials, 2021, 4, 6883-6891.	2.5	18

XIAOSHUANG ZHOU

#	Article	IF	CITATIONS
19	Self-Healing Silicone Elastomer with Stable and High Adhesion in Harsh Environments. Langmuir, 2021, 37, 13696-13702.	1.6	17
20	N-Doped graphene supported on N-rGO nanosheets as metal-free oxygen reduction reaction election electrocatalysts for Zn–air batteries. New Journal of Chemistry, 2021, 45, 21716-21724.	1.4	5
21	Evaluating the interfacial properties of wrinkled graphene fiber through single-fiber fragmentation tests. Journal of Materials Science, 2020, 55, 1023-1034.	1.7	7
22	Dibenzo[<i>b</i> , <i>d</i>]thiopheneâ€Cored Holeâ€Transport Material with Passivation Effect Enabling the Highâ€Efficiency Planar p–i–n Perovskite Solar Cells with 83% Fill Factor. Solar Rrl, 2020, 4, 1900421.	3.1	47
23	Excellent Rate and Low Temperature Performance of Lithiumâ€lon Batteries based on Binderâ€Free Li 4 Ti 5 O 12 Electrode. ChemElectroChem, 2020, 7, 716-722.	1.7	19
24	Interfacial Contact Passivation for Efficient and Stable Cesium-Formamidinium Double-Cation Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 100762.	1.9	37
25	Hierarchical Porous Carbon Arising from Metal–Organic Framework-Encapsulated Bacteria and Its Energy Storage Potential. ACS Applied Materials & Interfaces, 2020, 12, 11884-11889.	4.0	33
26	Sunlight-Driven Continuous Flapping-Wing Motion. ACS Applied Materials & Interfaces, 2020, 12, 6460-6470.	4.0	18
27	Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells. Journal of Energy Chemistry, 2020, 48, 217-225.	7.1	45
28	Superior Textured Film and Process Tolerance Enabled by Intermediateâ€State Engineering for Highâ€Efficiency Perovskite Solar Cells. Advanced Science, 2020, 7, 1903009.	5.6	22
29	Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density. Journal of Materials Science, 2020, 55, 8251-8263.	1.7	27
30	cells: insight into the carrier ultrafast dynamics and interfacial transport. Science China Chemistry, 2020, 63, 827-832.	4.2	13
31	Robust ZIF-8/alginate fibers for the durable and highly effective antibacterial textiles. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111127.	2.5	42
32	Ultraflexible and Lightweight Bambooâ€Derived Transparent Electrodes for Perovskite Solar Cells. Small, 2019, 15, e1902878.	5.2	40
33	A High Stretchable and Self–Healing Silicone Rubber with Double Reversible Bonds. ChemistrySelect, 2019, 4, 10719-10725.	0.7	23
34	Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion. Synthetic Metals, 2019, 257, 116177.	2.1	30
35	Activated carbon coated CNT core-shell nanocomposite for supercapacitor electrode with excellent rate performance at low temperature. Electrochimica Acta, 2019, 301, 478-486.	2.6	40
36	Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of â~'100 °C. Journal of Materials Chemistry A, 2019, 7, 16339-16346.	5.2	21

XIAOSHUANG ZHOU

#	Article	IF	CITATIONS
37	Wireâ€Shaped and Membraneâ€Free Fuel Cell Based on Biscrolled Carbon Nanotube Yarn. Energy Technology, 2019, 7, 1900122.	1.8	8
38	High Efficiency Planar pâ€iâ€n Perovskite Solar Cells Using Low ost Fluoreneâ€Based Hole Transporting Material. Advanced Functional Materials, 2019, 29, 1900484.	7.8	59
39	Temperature-independent capacitance of carbon-based supercapacitor from â^'100 to 60 °C. Energy Storage Materials, 2019, 22, 323-329.	9.5	104
40	A transparent, tough self-healing hydrogel based on a dual physically and chemically triple crosslinked network. Journal of Materials Chemistry C, 2019, 7, 14581-14587.	2.7	20
41	Improve the electrodeposition of sulfur and lithium sulfide in lithium-sulfur batteries with a comb-like ion-conductive organo-polysulfide polymer binder. Energy Storage Materials, 2019, 18, 190-198.	9.5	35
42	Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries. Science China Materials, 2018, 61, 371-381.	3.5	35
43	Heterojunction Engineering for High Efficiency Cesium Formamidinium Doubleâ€Cation Lead Halide Perovskite Solar Cells. ChemSusChem, 2018, 11, 837-842.	3.6	61
44	Design of an Inorganic Mesoporous Holeâ€Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805660.	11.1	179
45	A self-healing conductive and stretchable aligned carbon nanotube/hydrogel composite with a sandwich structure. Nanoscale, 2018, 10, 19360-19366.	2.8	39
46	Visual and flexible temperature sensor based on a pectin-xanthan gum blend film. Organic Electronics, 2018, 59, 243-246.	1.4	28
47	Flexible Actuator and Generator Stimulated by Organic Vapors. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1962-1967.	1.9	4
48	Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. Journal of Power Sources, 2017, 340, 302-308.	4.0	67
49	A new laminated structure for electrodes to boost the rate performance of long linear supercapacitors. Materials Letters, 2017, 204, 177-180.	1.3	8
50	<i>N</i> , <i>N</i> -Di- <i>para</i> -methylthiophenylamine-Substituted (2-Ethylhexyl)-9 <i>H</i> -Carbazole: A Simple, Dopant-Free Hole-Transporting Material for Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21821-21826.	1.5	29
51	A Biâ€Sheath Fiber Sensor for Giant Tensile and Torsional Displacements. Advanced Functional Materials, 2017, 27, 1702134.	7.8	100
52	Miniaturized Stretchable and High-Rate Linear Supercapacitors. Nanoscale Research Letters, 2017, 12, 448.	3.1	7
53	Downsized Sheath–Core Conducting Fibers for Weavable Superelastic Wires, Biosensors, Supercapacitors, and Strain Sensors. Advanced Materials, 2016, 28, 4998-5007.	11.1	131
54	Conducting Fibers: Downsized Sheath–Core Conducting Fibers for Weavable Superelastic Wires, Biosensors, Supercapacitors, and Strain Sensors (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 4946-4946.	11.1	6