
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6707593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 2019, 203, 71-86.	10.2	232
2	Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. Journal of Bioresources and Bioproducts, 2019, 4, 11-21.	20.5	193
3	Ultraflexible Self-Healing Guar Gum-Glycerol Hydrogel with Injectable, Antifreeze, and Strain-Sensitive Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3397-3404.	5.2	163
4	Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties. ACS Applied Materials & Interfaces, 2017, 9, 5477-5485.	8.0	122
5	Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1â€, 2â€, and 3â€D Nanocellulosic Materials. Small, 2020, 16, e1906567.	10.0	122
6	Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. Journal of Power Sources, 2020, 471, 228448.	7.8	97
7	A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chemical Engineering Journal, 2020, 396, 125318.	12.7	93
8	Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation. Carbohydrate Polymers, 2019, 222, 115042.	10.2	86
9	Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction reaction catalyst. Journal of Power Sources, 2020, 447, 227387.	7.8	86
10	A self-cleaning and photocatalytic cellulose-fiber- supported "Ag@AgCl@MOF- cloth'' membrane for complex wastewater remediation. Carbohydrate Polymers, 2020, 247, 116691.	10.2	83
11	Facile synthesis of Ag NPs@ MIL-100(Fe)/ guar gum hybrid hydrogel as a versatile photocatalyst for wastewater remediation: Photocatalytic degradation, water/oil separation and bacterial inactivation. Carbohydrate Polymers, 2020, 230, 115642.	10.2	82
12	A novel and green cellulose-based Schiff base-Cu (II) complex and its excellent antibacterial activity. Carbohydrate Polymers, 2020, 230, 115671.	10.2	76
13	Synthesis of nano-fibrillated cellulose/magnetite/titanium dioxide (NFC@Fe3O4@TNP) nanocomposites and their application in the photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2017, 206, 53-64.	20.2	72
14	Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chemical Engineering Journal, 2021, 418, 129518.	12.7	72
15	Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. Journal of Materials Science and Technology, 2022, 97, 190-200.	10.7	71
16	Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(VI) reduction. Carbohydrate Polymers, 2021, 258, 117676.	10.2	69
17	Multifunctional self-assembling hydrogel from guar gum. Chemical Engineering Journal, 2017, 330, 1044-1051.	12.7	68
18	Vitrimer-Cellulose Paper Composites: A New Class of Strong, Smart, Green, and Sustainable Materials. ACS Applied Materials & Interfaces, 2019, 11, 36090-36099.	8.0	67

#	Article	IF	CITATIONS
19	Green and sustainable cellulose-derived humidity sensors: A review. Carbohydrate Polymers, 2021, 270, 118385.	10.2	66
20	Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydrate Polymers, 2017, 169, 9-15.	10.2	63
21	Fabrication of 3D Expanded Graphite-Based (MnO2ÂNanowalls and PANI Nanofibers) Hybrid as Bifunctional Material for High-Performance Supercapacitor and Sensor. Journal of the Electrochemical Society, 2019, 166, A3965-A3971.	2.9	62
22	Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydrate Polymers, 2019, 223, 115061.	10.2	58
23	A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydrate Polymers, 2020, 244, 116472.	10.2	58
24	Asymmetrically Patterned Cellulose Nanofibers/Graphene Oxide Composite Film for Humidity Sensing and Moist-Induced Electricity Generation. ACS Applied Materials & Interfaces, 2020, 12, 55205-55214.	8.0	56
25	Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydrate Polymers, 2021, 271, 118425.	10.2	47
26	Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose, 2021, 28, 3733-3743.	4.9	44
27	Hydrogel as a Superwetting Surface Design Material for Oil/Water Separation: A Review. Advanced Materials Interfaces, 2021, 8, 2002030.	3.7	43
28	A versatile TOCN/CGG self-assembling hydrogel for integrated wastewater treatment. Cellulose, 2020, 27, 915-925.	4.9	41
29	Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system. Scientific Reports, 2016, 6, 36497.	3.3	40
30	A New Kind of Nonconventional Luminogen Based on Aliphatic Polyhydroxyurethane and Its Potential Application in Ink-Free Anticounterfeiting Printing. ACS Applied Materials & Interfaces, 2020, 12, 11005-11015.	8.0	38
31	Properties of hydroxypropyl guar/TEMPO-oxidized cellulose nanofibrils composite films. Cellulose, 2015, 22, 3117-3126.	4.9	34
32	A self-assembling guar gum hydrogel for efficient oil/water separation in harsh environments. Separation and Purification Technology, 2019, 225, 129-135.	7.9	32
33	Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 2019, 26, 2502-2513.	2.4	32
34	An Ultrastrong and Antibacterial Silver Nanowire/Aligned Cellulose Scaffold Composite Film for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2022, 14, 14520-14531.	8.0	30
35	Integrating phosphotungstic acid-assisted prerefining with cellulase treatment for enhancing the reactivity of kraft-based dissolving pulp. Bioresource Technology, 2021, 320, 124283.	9.6	29
36	Fabrication of high value cellulose nanofibers@Ni foam by non carbonization: various application developed during the preparation. Cellulose, 2021, 28, 1455-1468.	4.9	29

#	Article	IF	CITATIONS
37	Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose, 2019, 26, 6891-6901.	4.9	25
38	Co-N-Doped Directional Multichannel PAN/CA-Based Electrospun Carbon Nanofibers as High-Efficiency Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 17068-17077.	6.7	25
39	Co/CoS nanofibers with flower-like structure immobilized in carbonated porous wood as bifunctional material for high-performance supercapacitors and catalysts. Materials and Design, 2020, 195, 108942.	7.0	24
40	Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials. Journal of Materials Science and Technology, 2022, 129, 215-222.	10.7	24
41	Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films. Cellulose, 2016, 23, 2989-2999.	4.9	22
42	A highly efficient thermo responsive palladium nanoparticles incorporated guar gum hydrogel for effective catalytic reactions. Carbohydrate Polymers, 2019, 226, 115289.	10.2	22
43	Robust and adhesive lignin hybrid hydrogel as an ultrasensitive sensor. International Journal of Biological Macromolecules, 2022, 213, 226-233.	7.5	22
44	Construction of flexible cellulose nanofiber fiber@graphene quantum dots hybrid film applied in supercapacitor and sensor. Cellulose, 2021, 28, 10359-10372.	4.9	21
45	Carbonized porous wood as an effective scaffold for loading flower-like CoS, NiS nanofibers with Co, Ni nanoparticles served as electrode material for high-performance supercapacitors. Industrial Crops and Products, 2021, 167, 113545.	5.2	21
46	A green all-polysaccharide hydrogel platform for sensing and electricity harvesting/storage. Journal of Power Sources, 2021, 493, 229711.	7.8	18
47	Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
48	Organic modification of bentonite and its effect on rheological properties of paper coating. Applied Clay Science, 2015, 104, 106-109.	5.2	15
49	Isolation and Characterization of Microcrystalline Cellulose from Bamboo Pulp Through Extremely Low Acid Hydrolysis. Journal of Wood Chemistry and Technology, 2019, 39, 242-254.	1.7	15
50	Preparation of Dialdehyde Chitosan and its Application in Green Synthesis of Silver Nanoparticles. BioResources, 2013, 8, .	1.0	14
51	Simultaneous mechanical refining and phosphotungstic acid catalysis for improving the reactivity of kraft-based dissolving pulp. Cellulose, 2019, 26, 5685-5694.	4.9	14
52	Mixed-Acid-Assisted Hydrothermal Process for Simultaneous Preparation and Carboxylation of Needle-Shaped Cellulose Nanocrystals. ACS Applied Polymer Materials, 2020, 2, 548-562.	4.4	14
53	TEMPO-mediated oxidation of cellulose in carbonate buffer solution. Fibers and Polymers, 2015, 16, 319-325.	2.1	9
54	TEMPO-Oxidized Waste Cellulose as Reinforcement for Recycled Fiber Networks. Industrial & Engineering Chemistry Research, 2017, 56, 15065-15071.	3.7	9

#	Article	IF	CITATIONS
55	Microwave-assisted solvothermal in-situ synthesis of CdS nanoparticles on bacterial cellulose matrix for photocatalytic application. Cellulose, 2020, 27, 5939-5954.	4.9	8
56	Hydroxypropyl starchâ€based films reinforced by incorporation of alkalized microcrystalline cellulose. Polymer Composites, 2019, 40, E856.	4.6	5
57	A sustainable filtering material for efficient removal of volatile organic compounds from their aqueous mixtures. Cellulose, 2021, 28, 6353.	4.9	5
58	Highly ordered asymmetric cellulose-based honeycomb membrane for moisture-electricity generation and humidity sensing. Carbohydrate Polymers, 2022, 294, 119809.	10.2	5
59	Kinetics of the Curing Reaction of a Diglycidyl Ether of Bisphenol with a Methanol Etherified Amino Resin. Advanced Materials Research, 0, 380, 60-63.	0.3	4
60	Preparation of Cationic Chitosan-g-Polyacrylamide and its Performance on Strengthening Paper and Antibacterial Activities. Asian Journal of Chemistry, 2014, 26, 4235-4242.	0.3	3
61	Water-redispersible cellulose nanocrystals adsorption of glucose via alcohol precipitation. Journal of Wood Chemistry and Technology, 2021, 41, 169-176.	1.7	3
62	Role of nanocellulose in colored paper preparation. International Journal of Biological Macromolecules, 2022, 206, 355-362.	7.5	3
63	A Novel Ternary Composite of Polyurethane/Polyaniline/Nanosilica with Antistatic Property and Excellent Mechanical Strength: Preparation and Mechanism. Chinese Journal of Polymer Science (English Edition), 2022, 40, 789-798.	3.8	3
64	A new approach for the preparation of cellulose nanocrystals from bamboo pulp through extremely low acid hydrolysis. Tappi Journal, 2020, 19, 21-27.	0.5	2
65	Study on Structure and Properties of Degradable Polymer/Modified Nano-Si0 ₂ Composites. Advanced Materials Research, 0, 773, 514-519.	0.3	0
66	UPLC Coupled with a Post-column Derivatization Approach for Identification of Bioactive Compounds in Huanglian Jiedu Decoction. Chromatographia, 2021, 84, 1025.	1.3	0