
Kenneth A. Dyar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6707430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 2013, 280, 4294-4314.	2.2	1,115
2	Reprogramming of the Circadian Clock by Nutritional Challenge. Cell, 2013, 155, 1464-1478.	13.5	579
3	Muscle type and fiber type specificity in muscle wasting. International Journal of Biochemistry and Cell Biology, 2013, 45, 2191-2199.	1.2	435
4	Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 2014, 3, 29-41.	3.0	324
5	Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology, 2013, 14, 303-323.	2.0	274
6	Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell, 2018, 174, 1571-1585.e11.	13.5	258
7	NFAT isoforms control activity-dependent muscle fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13335-13340.	3.3	136
8	Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 2018, 16, e2005886.	2.6	107
9	MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nature Communications, 2016, 7, 12397.	5.8	88
10	Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metabolism, 2022, 34, 329-345.e8.	7.2	86
11	Cistromic Reprogramming of the Diurnal Glucocorticoid Hormone Response by High-Fat Diet. Molecular Cell, 2019, 76, 531-545.e5.	4.5	63
12	The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Molecular Metabolism, 2015, 4, 823-833.	3.0	58
13	The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models. Skeletal Muscle, 2016, 6, 33.	1.9	56
14	Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Science Advances, 2021, 7, eabi7828.	4.7	50
15	Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. Journal of Applied Physiology, 2010, 108, 105-111.	1.2	42
16	Circadian Metabolomics in Time and Space. Frontiers in Neuroscience, 2017, 11, 369.	1.4	39
17	Skeletal muscle mass is controlled by the MRF4–MEF2 axis. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 164-167.	1.3	29
18	Myeloid calcifying cells promote atherosclerotic calcification via paracrine activity and allograft inflammatory factor-1 overexpression. Basic Research in Cardiology, 2013, 108, 368.	2.5	28

Kenneth A. Dyar

#	Article	IF	CITATIONS
19	Exerciseâ€dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTFâ€6RF signalling. Acta Physiologica, 2020, 230, e13496.	1.8	27
20	Modest alterations in patterns of motor neuron dendrite morphology in the Fmr1 knockout mouse model for fragile X. International Journal of Developmental Neuroscience, 2008, 26, 805-811.	0.7	24
21	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11, 2306.	5.8	21
22	Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling. Frontiers in Physiology, 2017, 8, 968.	1.3	17
23	Aging: a portrait from gene expression profile in blood cells. Aging, 2016, 8, 1802-1821.	1.4	15
24	Common Muscle Metabolic Signatures Highlight Arginine and Lysine Metabolism as Potential Therapeutic Targets to Combat Unhealthy Aging. International Journal of Molecular Sciences, 2021, 22, 7958.	1.8	10
25	Effects of Acute and Chronic Resistance Exercise on the Skeletal Muscle Metabolome. Metabolites, 2022, 12, 445.	1.3	9
26	Inactivation of the intrinsic muscle clock does not cause sarcopenia. Journal of Physiology, 2016, 594, 3161-3162.	1.3	6
27	In Vivo ChIP-Seq of Nuclear Receptors: A Rough Guide to Transform Frozen Tissues into High-Confidence Genome-Wide Binding Profiles. Methods in Molecular Biology, 2019, 1966, 39-70.	0.4	5
28	Analogues of Natural Chalcones as Efficient Inhibitors of AKR1C3. Metabolites, 2022, 12, 99.	1.3	5
29	Skeletal Muscle Metabolomics for Metabolic Phenotyping and Biomarker Discovery. , 2019, , 193-217.		3
30	Untargeted and Targeted Circadian Metabolomics Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Flow Injection-Electrospray Ionization-Tandem Mass Spectrometry (FIA-ESI-MS/MS). Methods in Molecular Biology, 2022, , 311-327.	0.4	2
31	Antibiotic-induced microbiome depletion remodels daily metabolic cycles in the brain. Life Sciences, 2022, 303, 120601.	2.0	1
32	Activity-Dependent Control of Circadian Rhythms in Mammalian Skeletal Muscle. Medicine and Science in Sports and Exercise, 2010, 42, 96-97.	0.2	0
33	Atlas of Exercise Metabolism Reveals Time-Dependent Signatures of Metabolic Homeostasis. SSRN Electronic Journal, 0, , .	0.4	О