Gan Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6707396/gan-zhang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

348	11,236	54	87
papers	citations	h-index	g-index
364 ext. papers	13,540 ext. citations	8.1 avg, IF	6.56 L-index

#	Paper	IF	Citations
348	Plant uptake of perfluoroalkyl substances in freshwater environments (Dongzhulong and Xiaoqing Rivers, China). <i>Journal of Hazardous Materials</i> , 2022 , 421, 126768	12.8	6
347	Characterization of airborne PAHs and metals associated with PM10 fractions collected from an urban area of Sri Lanka and the impact on airway epithelial cells. <i>Chemosphere</i> , 2022 , 286, 131741	8.4	4
346	Refined source apportionment of residential and industrial fuel combustion in the Beijing based on real-world source profiles <i>Science of the Total Environment</i> , 2022 , 154101	10.2	О
345	Comparison of atmospheric polycyclic aromatic hydrocarbons (PAHs) over six years at a CAWNET background site in central China: Changes of seasonal variations and potential sources <i>Chemosphere</i> , 2022 , 299, 134298	8.4	1
344	Nitrogen isotopic composition of NO from residential biomass burning and coal combustion in North China <i>Environmental Pollution</i> , 2022 , 304, 119238	9.3	1
343	Evaluation of ceiling fan dust as an indicator of indoor PCBs pollution in selected cities of Punjab, Pakistan: implication on human health. <i>Arabian Journal of Geosciences</i> , 2022 , 15, 1	1.8	1
342	The positive role of root decomposition on the bioremediation of organic pollutants contaminated soil: A case study using PCB-9 as a model compound. <i>Soil Biology and Biochemistry</i> , 2022 , 108726	7.5	O
341	Molecular characteristics, sources, and formation pathways of organosulfur compounds in ambient aerosol in Guangzhou, South China. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 6919-6935	6.8	1
340	Exploring source footprint of Organophosphate esters in the Bohai Sea, China: Insight from temporal and spatial variabilities in the atmosphere from June 2014 to May 2019 <i>Environment International</i> , 2021 , 159, 107044	12.9	2
339	Polycyclic Aromatic Carbon: A Key Fraction Determining the Light Absorption Properties of Methanol-Soluble Brown Carbon of Open Biomass Burning Aerosols. <i>Environmental Science & Technology</i> , 2021 , 55, 15724-15733	10.3	1
338	Dual-carbon isotope constraints on source apportionment of black carbon in the megacity Guangzhou of the Pearl River Delta region, China for 2018 autumn season. <i>Environmental Pollution</i> , 2021 , 294, 118638	9.3	O
337	Mechanism of salicylic acid in promoting the rhizosphere benzo[a]pyrene biodegradation as revealed by DNA-stable isotope probing. <i>Science of the Total Environment</i> , 2021 , 152202	10.2	0
336	Uptake, Acropetal Translocation, and Enantioselectivity of Perfluorooctane Sulfonate in Maize Coexisting with Copper. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 2062-2068	5.7	1
335	Use of molecular markers and compound-specific isotopic signatures to trace sources of black carbon in surface sediments of Peninsular Malaysia: Impacts of anthropogenic activities. <i>Marine Chemistry</i> , 2021 , 104032	3.7	0
334	Shifts in a Phenanthrene-Degrading Microbial Community are Driven by Carbohydrate Metabolism Selection in a Ryegrass Rhizosphere. <i>Environmental Science & Environmental Scien</i>	10.3	10
333	Trace metal contamination in soils from mountain regions across China: spatial distribution, sources, and potential drivers. <i>Soil Ecology Letters</i> , 2021 , 3, 189-206	2.7	3
332	Toward a More Comprehensive Understanding of Autochthonous Bioaugmentation (ABA): Cases of ABA for Phenanthrene and Biphenyl by Ralstonia sp. M1 in Industrial Wastewater. <i>ACS ES&T Water</i> , 2021 , 1, 1390-1400		1

(2021-2021)

Probing Legacy and Alternative Flame Retardants in the Air of Chinese Cities. <i>Environmental Science & Environmental &</i>	10.3	2	
Insights into Persistent Toxic Substances in Protective Cases of Mobile Phones: Occurrence, Health Risks, and Implications. <i>Environmental Science & Description (Control of the Control o</i>	10.3	О	
Short-term personal PM exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China. <i>Environmental Pollution</i> , 2021 , 275, 116601	9.3	7	
Environmental fate and effects of organophosphate flame retardants in the soil-plant system. <i>Soil Ecology Letters</i> , 2021 , 3, 178-188	2.7	1	
Dual Carbon Isotope-Based Source Apportionment and Light Absorption Properties of Water-Soluble Organic Carbon in PM2.5 Over China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033920	4.4	1	
Determining the Sources and Transport of Brown Carbon Using Radionuclide Tracers and Modeling. Journal of Geophysical Research D: Atmospheres, 2021 , 126, e2021JD034616	4.4	2	
Radiocarbon isotope technique as a powerful tool in tracking anthropogenic emissions of carbonaceous air pollutants and greenhouse gases: A review. <i>Fundamental Research</i> , 2021 , 1, 306-316		5	
Field evaluation of diffusive gradients in thin-film passive samplers for wastewater-based epidemiology. <i>Science of the Total Environment</i> , 2021 , 773, 145480	10.2	5	
Role of low-latitude forests in modulating forest filter effect on a continental scale: Long-term simulation on PCB-153 in Chinese forests. <i>Science of the Total Environment</i> , 2021 , 778, 146285	10.2	О	
DDT, Chlordane, and Hexachlorobenzene in the Air of the Pearl River Delta Revisited: A Tale of Source, History, and Monsoon. <i>Environmental Science & Description (2021)</i> , 55, 9740-9749	10.3	1	
Atmospheric polycyclic aromatic hydrocarbons (PAHs) at urban settings in Pakistan: Spatial variations, sources and health risks. <i>Chemosphere</i> , 2021 , 274, 129811	8.4	5	
Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak. <i>Journal of Oceanology and Limnology</i> , 2021 , 39, 122-134	1.5	5	
Simultaneous determination of stable chlorine and bromine isotopic ratios for bromochlorinated trihalomethanes using GC-qMS. <i>Chemosphere</i> , 2021 , 264, 128529	8.4	2	
Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123990	12.8	8	
Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: A review. <i>Science of the Total Environment</i> , 2021 , 753, 142028	10.2	21	
Examination of barnacles@otential to be used as bioindicators of persistent organic pollutants in coastal ecosystem: A Malaysia case study. <i>Chemosphere</i> , 2021 , 263, 128272	8.4	3	
Reapportioning the sources of secondary components of PM: A combined application of positive matrix factorization and isotopic evidence. <i>Science of the Total Environment</i> , 2021 , 764, 142925	10.2	2	
Organochlorine pesticides (OCPs) in air-conditioner filter dust of indoor urban setting: Implication for health risk in a developing country. <i>Indoor Air</i> , 2021 , 31, 807-817	5.4	2	
	Insights into Persistent Toxic Substances in Protective Cases of Mobile Phones: Occurrence, Health Risks, and Implications. Environmental Science & Emp; Technology, 2021, 55, 6076-6086 Short-term personal PM exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China. Environmental Pollution, 2021, 275, 116601 Environmental fate and effects of organophosphate flame retardants in the soil-plant system. Soil Ecology Letters, 2021, 3, 178-188 Dual Carbon Isotope-Based Source Apportionment and Light Absorption Properties of Water-Soluble Organic Carbon in PM2.5 Over China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021)D033920 Determining the Sources and Transport of Brown Carbon Using Radionuclide Tracers and Modeling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021)D034616 Radiocarbon isotope technique as a powerful tool in tracking anthropogenic emissions of carbonaceous air pollutants and greenhouse gases: A review. Fundamental Research, 2021, 1, 306-316 Field evaluation of diffusive gradients in thin-film passive samplers for wastewater-based epidemiology. Science of the Total Environment, 2021, 773, 145480 Role of low-latitude forests in modulating forest filter effect on a continental scale: Long-term simulation on PCB-153 in Chinese forests. Science of the Total Environment, 2021, 778, 146285 DDT, Chlordane, and Hexachlorobenzene in the Air of the Pearl River Delta Revisited: A Tale of Source, History, and Monsoon. Environmental Science & Emp; Technology, 2021, 759, 7940-9749 Atmospheric polycyclic aromatic hydrocarbons (PAHs) at urban settings in Pakistan: Spatial variations, sources and health risks. Chemosphere, 2021, 274, 129811 Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak. Journal of Oceanology and Limnology, 2021, 39, 122-134 Simultaneous determination of stable chlorine and bromine isotopic ratios for bromochlorinated trihalomet	Insights into Persistent Toxic Substances in Protective Cases of Mobile Phones: Occurrence, Health Risks, and Implications. Environmental Science Samp, Technology, 2021, 55, 6076-6086 10.3 Short-term personal PM exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China. Environmental Pollution, 2021, 275, 116601 9.3 Environmental fate and effects of organophosphate flame retardants in the soil-plant system. Soil Ecology Letters, 2021, 3, 178-188 27 Dual Carbon Isotope-Based Source Apportionment and Light Absorption Properties of Water-Soluble Organic Carbon in PM2.5 Over China. Journal of Geophysical Research D: Atmospheres 44, 2021, 126, e2020JD033920 Determining the Sources and Transport of Brown Carbon Using Radionuclide Tracers and Modeling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034616 44 Radiocarbon isotope technique as a powerful tool in tracking anthropogenic emissions of carbonaceous air pollutants and greenhouse gases: A review. Fundamental Research, 2021, 1, 306-316 Field evaluation of diffusive gradients in thin-film passive samplers for wastewater-based epidemiology. Science of the Total Environment, 2021, 773, 145480 10.2 Role of low-latitude forests in modulating forest filter effect on a continental scale: Long-term simulation on PCB-153 in Chinese forests. Science of the Total Environment, 2021, 778, 146285 10.2 DDT, Chlordane, and Hexachlorobenzene in the Air of the Pearl River Delta Revisited: A Tale of Source, History, and Monsoon. Environmental Science & Amp. Technology, 2021, 55, 9740-9749 10.3 Atmospheric polycyclic aromatic hydrocarbons (PAHs) at urban settings in Pakistan: Spatial variations, sources and health risks. Chemosphere, 2021, 274, 129811 19.3 Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak. Journal of Oceanology and Limnology, 2021, 39, 122-134 19.3 Simultaneous determination of stable chlorine and bromine isotop	Insights into Persistent Toxic Substances in Protective Cases of Mabile Phones: Occurrence, Health Risks, and Implications. Environmental Science & Empire Persistent Toxic Substances in Protective Cases of Mabile Phones: Occurrence, Health Risks, and Implications. Environmental Science & Empire Persistent Toxic Substances in Protective Cases of Mabile Phones: Occurrence, Health Risks, and Implications. Environmental Science & Empire Persistent Organic Carbon In PM exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China. Environmental Pollution, 2021, 275, 116601 Provided Feed of Panel PM exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China. Environmental Pollution, 2021, 275, 116601 Provided Provid

313	DNA Methylation Biomarkers of IQ Reduction are Associated with Long-term Lead Exposure in School Aged Children in Southern China. <i>Environmental Science & Environmental Scien</i>	10.3	О
312	Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. <i>Indoor Air</i> , 2021 , 31, 1417-1426	5.4	1
311	Compound-Specific Radiocarbon Analysis of Low Molecular Weight Dicarboxylic Acids in Ambient Aerosols Using Preparative Gas Chromatography: Method Development. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 135-141	11	2
310	Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123895	12.8	12
309	Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11337-11352	6.8	3
308	The application of land use regression model to investigate spatiotemporal variations of PM in Guangzhou, China: Implications for the public health benefits of PM reduction. <i>Science of the Total Environment</i> , 2021 , 778, 146305	10.2	9
307	Regional characteristics of atmospheric B-SO over three parts of Asia monitored by quartz wool-based passive samplers. <i>Science of the Total Environment</i> , 2021 , 778, 146107	10.2	1
306	Molecular Dynamics and Light Absorption Properties of Atmospheric Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Environme</i>	10.3	3
305	Dual-isotope-based source apportionment of nitrate in 30 rivers draining into the Bohai Sea, north China. <i>Environmental Pollution</i> , 2021 , 283, 117112	9.3	1
304	Decade-scale change in testate amoebae community primarily driven by anthropogenic disturbance than natural change in a large subtropical reservoir. <i>Science of the Total Environment</i> , 2021 , 784, 147026	10.2	1
303	The catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation in oil-contaminated soil. <i>Environmental Microbiology</i> , 2021 , 23, 7042-7055	5.2	3
302	Concentrations, profiles and exposure risks of polycyclic aromatic hydrocarbons (PAHs) in passive air samples from Lagos, Nigeria. <i>Atmospheric Pollution Research</i> , 2021 , 12, 101162	4.5	1
301	Year-Round Measurements of Dissolved Black Carbon in Coastal Southeast Asia Aerosols: Rethinking Its Atmospheric Deposition in the Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034590	4.4	2
300	Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper. <i>Environment International</i> , 2021 , 155, 106591	12.9	4
299	Size distribution and inhalation exposure of airborne particle-bound polybrominated diphenyl ethers, new brominated flame retardants, organophosphate esters, and chlorinated paraffins at urban open consumption place. <i>Science of the Total Environment</i> , 2021 , 794, 148695	10.2	О
298	Distribution of black carbon and PAHs in sediments of Peninsular Malaysia. <i>Marine Pollution Bulletin</i> , 2021 , 172, 112871	6.7	3
297	Per- and polyfluoroalkyl substances (PFASs) in the soil-plant system: Sorption, root uptake, and translocation. <i>Environment International</i> , 2021 , 156, 106642	12.9	13
296	The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources. <i>Journal of Hazardous Materials Letters</i> , 2021 , 2, 100026	3.3	2

(2020-2021)

295	Photochemical ozone pollution in five Chinese megacities in summer 2018. <i>Science of the Total Environment</i> , 2021 , 801, 149603	10.2	7
294	Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region, China. <i>Environment International</i> , 2020 , 144, 106079	12.9	11
293	Health risk-oriented source apportionment of PM-associated trace metals. <i>Environmental Pollution</i> , 2020 , 262, 114655	9.3	28
292	Tracking photodegradation products and bond-cleavage reaction pathways of triclosan using ultra-high resolution mass spectrometry and stable carbon isotope analysis. <i>Environmental Pollution</i> , 2020 , 264, 114673	9.3	10
291	Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon. <i>Atmosphere</i> , 2020 , 11, 512	2.7	5
290	Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. <i>Atmospheric Environment</i> , 2020 , 235, 117	<i>6</i> 2 ³ 4	8
289	Isotopic Interpretation of Particulate Nitrate in the Metropolitan City of Karachi, Pakistan: Insight into the Oceanic Contribution to NO. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	7
288	Effect of walnut shell biochars on soil quality, crop yields, and weed dynamics in a 4-year field experiment. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 18510-18520	5.1	3
287	Polychlorinated biphenyls and organochlorines pesticides in indoor dust: An exploration of sources and health exposure risk in a rural area (Kopawa) of Nepal. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 195, 110376	7	5
286	Source and formation of fine particulate nitrate in South China: Constrained by isotopic modeling and online trace gas analysis. <i>Atmospheric Environment</i> , 2020 , 231, 117563	5.3	4
285	Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones. <i>Nature Sustainability</i> , 2020 , 3, 878-884	22.1	41
284	Isotope constraints of the strong influence of biomass burning to climate-forcing Black Carbon aerosols over Southeast Asia. <i>Science of the Total Environment</i> , 2020 , 744, 140359	10.2	5
283	Dual-modelling-based source apportionment of NO in five Chinese megacities: Providing the isotopic footprint from 2013 to 2014. <i>Environment International</i> , 2020 , 137, 105592	12.9	30
282	Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior. <i>Environmental Pollution</i> , 2020 , 262, 114139	9.3	10
281	Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia. <i>Environmental Pollution</i> , 2020 , 262, 114266	9.3	11
280	Occurrence and sources of PCBs, PCNs, and HCB in the atmosphere at a regional background site in east China: Implications for combustion sources. <i>Environmental Pollution</i> , 2020 , 262, 114267	9.3	13
279	Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China. <i>Science of the Total Environment</i> , 2020 , 712, 136526	10.2	18
278	Autochthonous bioaugmentation with non-direct degraders: A new strategy to enhance wastewater bioremediation performance. <i>Environment International</i> , 2020 , 136, 105473	12.9	6

277	Airborne brominated, chlorinated and organophosphate ester flame retardants inside the buildings of the Indian state of Bihar: Exploration of source and human exposure. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 191, 110212	7	13
276	Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. <i>Environmental Pollution</i> , 2020 , 263, 114391	9.3	33
275	Triple Isotopes (ሺ, 日, and ሺ) Compositions and Source Apportionment of Atmospheric Naphthalene: A Key Surrogate of Intermediate-Volatility Organic Compounds (IVOCs). <i>Environmental Science & Environmental Science & Environ</i>	10.3	9
274	Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation mission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis. <i>Atmospheric Chemistry</i>	6.8	40
273	Monitoring Consumption of Common Illicit Drugs in Kuala Lumpur, Malaysia, by Wastewater-Cased Epidemiology. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	16
272	Screening of human health risk to infants associated with the polychlorinated biphenyl (PCB) levels in human milk from Punjab Province, Pakistan. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 6837-6850	5.1	5
271	Hazardous volatile organic compounds in ambient air of China. Chemosphere, 2020, 246, 125731	8.4	29
270	Spatiotemporal variations of chlorinated paraffins in PM from Chinese cities: Implication of the shifting and upgrading of its industries. <i>Environmental Pollution</i> , 2020 , 259, 113853	9.3	4
269	Assessment of persistent organic pollutants (POPs) in sediments of the Eastern Indian Ocean. <i>Science of the Total Environment</i> , 2020 , 710, 136335	10.2	22
268	Evidence for Major Contributions of Unintentionally Produced PCBs in the Air of China: Implications for the National Source Inventory. <i>Environmental Science & Environmental </i>	10.3	32
267	The Need to Adopt an International PMT Strategy to Protect Drinking Water Resources. <i>Environmental Science & Environmental Sc</i>	10.3	6
266	Insight into the Variability of the Nitrogen Isotope Composition of Vehicular NO in China. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	6
265	Legacy and emerging flame retardants (FRs) in the urban atmosphere of Pakistan: Diurnal variations, gas-particle partitioning and human health exposure. <i>Science of the Total Environment</i> , 2020 , 743, 140874	10.2	8
264	Decoupled Spatial Distribution of PAHs Degraders Determined by Taxonomic 16S rRNA and Degrading Genes Across Chinese Forest Soils. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2020JG005659	3.7	O
263	Distribution and Chiral Signatures of Polychlorinated Biphenyls (PCBs) in Soils and Vegetables around an e-Waste Recycling Site. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 10542-10549	5.7	3
262	Human Health Risk Assessment by Dietary Intake and Spatial Distribution Pattern of Polybrominated Diphenyl Ethers and Dechloran Plus from Selected Cities of Pakistan. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	6
261	Source apportionment of water-soluble brown carbon in aerosols over the northern South China Sea: Influence from land outflow, SOA formation and marine emission. <i>Atmospheric Environment</i> , 2020 , 229, 117484	5.3	15
260	Atmospheric deposition and air-soil exchange of polybrominated diphenyl ethers (PBDEs) in a background site in Central China. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 31934-31944	5.1	8

259	Benzene polycarboxylic acid characterisation of polyaromatics in ambient aerosol: Method development. <i>Atmospheric Environment</i> , 2019 , 211, 55-62	5.3	5
258	Stable-Isotope Probing-Enabled Cultivation of the Indigenous Bacterium sp. Strain M1, Capable of Degrading Phenanthrene and Biphenyl in Industrial Wastewater. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	13
257	Assessing Air-Surface Exchange and Fate of Mercury in a Subtropical Forest Using a Novel Passive Exchange-Meter Device. <i>Environmental Science & Exchange amp; Technology</i> , 2019 , 53, 4869-4879	10.3	4
256	Molecular marker study of aerosols in the northern South China Sea: Impact of atmospheric outflow from the Indo-China Peninsula and South China. <i>Atmospheric Environment</i> , 2019 , 206, 225-236	5.3	9
255	Inflammation Response of Water-Soluble Fractions in Atmospheric Fine Particulates: A Seasonal Observation in 10 Large Chinese Cities. <i>Environmental Science & Environmental &</i>	10.3	22
254	Examining the role of total organic carbon and black carbon in the fate of legacy persistent organic pollutants (POPs) in indoor dust from Nepal: Implication on human health. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 175, 225-235	7	13
253	High Abundance of Unintentionally Produced Tetrachlorobiphenyls (PCB47/48/75, 51, and 68) in the Atmosphere at a Regional Background Site in East China. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 3464-3470	10.3	21
252	Contributions of City-Specific Fine Particulate Matter (PM) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. <i>Environmental Science & Echnology</i> , 2019 , 53, 2881-2891	10.3	60
251	Occurrence of N-Nitrosamines in the Pearl River delta of China: Characterization and evaluation of different sources. <i>Water Research</i> , 2019 , 164, 114896	12.5	15
250	Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. <i>Science of the Total Environment</i> , 2019 , 688, 1335-1347	10.2	13
249	Molecular characterization of polar organic aerosol constituents in off-road engine emissions using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): implications for source apportionment. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13945-13956	6.8	12
248	Seasonal variation of atmospheric organochlorine pesticides and polybrominated diphenyl ethers in Parangipettai, Tamil Nadu, India: Implication for atmospheric transport. <i>Science of the Total Environment</i> , 2019 , 649, 1653-1660	10.2	15
247	Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. <i>Chemosphere</i> , 2019 , 217, 195-203	8.4	27
246	Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. <i>Chemosphere</i> , 2019 , 218, 1100-1113	8.4	69
245	Isolation and radiocarbon analysis of elemental carbon in atmospheric aerosols using hydropyrolysis. <i>Atmospheric Environment</i> , 2019 , 198, 381-386	5.3	5
244	The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils. <i>Science of the Total Environment</i> , 2019 , 660, 733-740	10.2	18
243	The presence of in situ sulphamethoxazole degraders and their interactions with other microbes in activated sludge as revealed by DNA stable isotope probing and molecular ecological network analysis. <i>Environment International</i> , 2019 , 124, 121-129	12.9	18
242	Diversity of the active phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates. <i>Soil Biology and Biochemistry</i> , 2019 , 128, 100-110	7.5	48

241	Development and assessment of a receptor source apportionment model based on four nonnegative matrix factorization algorithms. <i>Atmospheric Environment</i> , 2019 , 197, 159-165	5.3	3
240	Temporal variations and potential sources of organophosphate esters in PM in Xinxiang, North China. <i>Chemosphere</i> , 2019 , 215, 500-506	8.4	18
239	Assessing the level and sources of Polycyclic Aromatic Hydrocarbons (PAHs) in soil and sediments along Jhelum riverine system of lesser Himalayan region of Pakistan. <i>Chemosphere</i> , 2019 , 216, 640-652	8.4	20
238	Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 168, 304-314	7	29
237	Large-river dominated black carbon flux and budget: A case study of the estuarine-inner shelf of East China Sea, China. <i>Science of the Total Environment</i> , 2019 , 651, 2489-2496	10.2	12
236	Bioaccumulation and cycling of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in three natural mangrove ecosystems of South China. <i>Science of the Total Environment</i> , 2019 , 651, 1788	3 ⁻¹ 1735	23
235	Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4-year field study. <i>Journal of the Science of Food and Agriculture</i> , 2019 , 99, 1862-1869	4.3	31
234	Evidence of Rural and Suburban Sources of Urban Haze Formation in China: A Case Study From the Pearl River Delta Region. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4712-4726	4.4	13
233	Characterizing the antibiotic resistance genes in a river catchment: Influence of anthropogenic activities. <i>Journal of Environmental Sciences</i> , 2018 , 69, 125-132	6.4	19
232	Identification of biphenyl-metabolising microbes in activated biosludge using cultivation-independent and -dependent approaches. <i>Journal of Hazardous Materials</i> , 2018 , 353, 534-54	112.8	15
231	Real-World Emission Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and Their Total Emissions in China. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 4910-4919	10.3	32
230	Dual carbon isotopes (C and C) and optical properties of WSOC and HULIS-C during winter in Guangzhou, China. <i>Science of the Total Environment</i> , 2018 , 633, 1571-1578	10.2	26
229	An improved inventory of polychlorinated biphenyls in China: A case study on PCB-153. <i>Atmospheric Environment</i> , 2018 , 183, 40-48	5.3	17
228	An assessment of polyurethane foam passive samplers for atmospheric metals compared with active samplers. <i>Environmental Pollution</i> , 2018 , 236, 498-504	9.3	8
227	Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 9904-9914	5.1	7
226	Contribution of Biomass Burning to Ambient Particulate Polycyclic Aromatic Hydrocarbons at a Regional Background Site in East China. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 56-61	11	17
225	Autochthonous Bioaugmentation-Modified Bacterial Diversity of Phenanthrene Degraders in PAH-Contaminated Wastewater as Revealed by DNA-Stable Isotope Probing. <i>Environmental Science & Environmental Science</i>	10.3	47
224	Altitudinal and spatial variations of polycyclic aromatic hydrocarbons in Nepal: Implications on source apportionment and risk assessment. <i>Chemosphere</i> , 2018 , 198, 386-396	8.4	8

223	Effects of lead, cadmium, arsenic, and mercury co-exposure on children@intelligence quotient in an industrialized area of southern China. <i>Environmental Pollution</i> , 2018 , 235, 47-54	9.3	49
222	PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. <i>Atmospheric Research</i> , 2018 , 203, 207-215	5.4	69
221	Organochlorine contaminants in freshwater mussels; occurrence, bioaccumulation pattern, spatio-temporal distribution and human health risk assessment from the tributaries of River Ravi, Pakistan. <i>Human and Ecological Risk Assessment (HERA)</i> , 2018 , 24, 1268-1290	4.9	8
220	Quantification of polychlorinated biphenyl contamination using human placenta as biomarker from Punjab Province, Pakistan. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 14551-14562	5.1	7
219	Brominated flame retardants and dechlorane plus on a remote high mountain of the eastern Tibetan Plateau: implications for regional sources and environmental behaviors. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 1887-1897	4.7	11
218	Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth. <i>Environmental Pollution</i> , 2018 , 232, 450-457	9.3	42
217	Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment. <i>Chemosphere</i> , 2018 , 190, 114-123	8.4	48
216	Assessing on toxic potency of PM-bound polycyclic aromatic hydrocarbons at a national atmospheric background site in North China. <i>Science of the Total Environment</i> , 2018 , 612, 330-338	10.2	17
215	Spatiotemporal Trends of Elemental Carbon and Char/Soot Ratios in Five Sediment Cores from Eastern China Marginal Seas: Indicators of Anthropogenic Activities and Transport Patterns. <i>Environmental Science & Environmental </i>	10.3	12
214	Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. <i>Science of the Total Environment</i> , 2018 , 645, 596-602	10.2	27
213	Emissions and characteristics of particulate matter from rainforest burning in the Southeast Asia. <i>Atmospheric Environment</i> , 2018 , 191, 194-204	5.3	16
212	Short- and medium-chain chlorinated paraffins in the Henan section of the Yellow River: Occurrences, fates, and fluxes. <i>Science of the Total Environment</i> , 2018 , 640-641, 1312-1319	10.2	12
211	Coupling magnetic-nanoparticle mediated isolation (MMI) and stable isotope probing (SIP) for identifying and isolating the active microbes involved in phenanthrene degradation in wastewater with higher resolution and accuracy. <i>Water Research</i> , 2018 , 144, 226-234	12.5	18
210	Bioaccumulation and Cycling of Polycyclic Aromatic Hydrocarbons (PAHs) in Typical Mangrove Wetlands of Hainan Island, South China. <i>Archives of Environmental Contamination and Toxicology</i> , 2018 , 75, 464-475	3.2	6
209	Biphenyl-Metabolizing Microbial Community and a Functional Operon Revealed in E-Waste-Contaminated Soil. <i>Environmental Science & Environmental Scienc</i>	10.3	38
208	High Time- and Size-Resolved Measurements of PM and Chemical Composition from Coal Combustion: Implications for the EC Formation Process. <i>Environmental Science & Environmental Science & Environment</i>	10.3	32
207	Assessment and quantification of NO sources at a regional background site in North China: Comparative results from a Bayesian isotopic mixing model and a positive matrix factorization model. <i>Environmental Pollution</i> , 2018 , 242, 1379-1386	9.3	13
206	Flux and source-sink relationship of heavy metals and arsenic in the Bohai Sea, China. <i>Environmental Pollution</i> , 2018 , 242, 1353-1361	9.3	23

205	Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal: Implication for risk assessment. <i>Science of the Total Environment</i> , 2018 , 613-614, 502-512	10.2	52
204	Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect. <i>Science of the Total Environment</i> , 2018 , 616-617, 223-235	10.2	44
203	Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning. <i>Environmental Pollution</i> , 2018 , 233, 642-654	9.3	24
202	Sedimentary black carbon and organochlorines in Lesser Himalayan Region of Pakistan: Relationship along the altitude. <i>Science of the Total Environment</i> , 2018 , 621, 1568-1580	10.2	11
201	Role of black carbon in soil distribution of organochlorines in Lesser Himalayan Region of Pakistan. <i>Environmental Pollution</i> , 2018 , 236, 971-982	9.3	12
200	Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand. <i>Science of the Total Environment</i> , 2018 , 619-620, 165-175	10.2	49
199	Organochlorine pesticides across the tributaries of River Ravi, Pakistan: Human health risk assessment through dermal exposure, ecological risks, source fingerprints and spatio-temporal distribution. <i>Science of the Total Environment</i> , 2018 , 618, 291-305	10.2	46
198	Applications of High-Resolution Mass Spectrometry in Studies of Brown Carbon. <i>Chinese Journal of Analytical Chemistry</i> , 2018 , 46, 1528-1538	1.6	2
197	Fossil and Non-fossil Sources of Organic and Elemental Carbon Aerosols in Beijing, Shanghai and Guangzhou: Seasonal Variation of Carbon Source 2018 ,		6
196	Short- and medium-chain chlorinated paraffins in sediments from the Laizhou Bay area, North China: Implications for transportation from rivers to marine environment. <i>Environmental Pollution</i> , 2018 , 243, 1460-1468	9.3	13
195	Using Polyurethane Foam-Based Passive Air Sampling Technique to Monitor Monosaccharides at a Regional Scale. <i>Environmental Science & Environmental Sc</i>	10.3	7
194	Environmental behaviour of polychlorinated biphenyls in a paddy field: Impact factors and canopy effects. <i>Science of the Total Environment</i> , 2018 , 637-638, 50-57	10.2	3
193	Sources, compositions, and optical properties of humic-like substances in Beijing during the 2014 APEC summit: Results from dual carbon isotope and Fourier-transform ion cyclotron resonance mass spectrometry analyses. <i>Environmental Pollution</i> , 2018 , 239, 322-331	9.3	26
192	Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 161, 64-69	7	30
191	Cycling and Budgets of Organic and Black Carbon in Coastal Bohai Sea, China: Impacts of Natural and Anthropogenic Perturbations. <i>Global Biogeochemical Cycles</i> , 2018 , 32, 971-986	5.9	13
190	Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. <i>Science of the Total Environment</i> , 2018 , 643, 1013-1023	10.2	18
189	A review on emerging persistent organic pollutants: Current scenario in Pakistan. <i>Human and Ecological Risk Assessment (HERA)</i> , 2017 , 23, 1-13	4.9	12
188	PM in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. <i>Environmental Pollution</i> , 2017 , 223, 200-212	9.3	180

187	Impacts of human activities on the spatial distribution and sources of polychlorinated naphthalenes in the middle and lower reaches of the Yellow River. <i>Chemosphere</i> , 2017 , 176, 369-377	8.4	18
186	New halogenated flame retardants in the atmosphere of nine urban areas in China: Pollution characteristics, source analysis and variation trends. <i>Environmental Pollution</i> , 2017 , 224, 679-688	9.3	25
185	Optimizing isolation protocol of organic carbon and elemental carbon for 14C analysis using fine particulate samples. <i>Atmospheric Environment</i> , 2017 , 154, 9-19	5.3	12
184	Biodegradation of Phenanthrene in Polycyclic Aromatic Hydrocarbon-Contaminated Wastewater Revealed by Coupling Cultivation-Dependent and -Independent Approaches. <i>Environmental Science & Environmental Science</i>	10.3	61
183	Occurrence and distribution of antibiotics in multiple environmental media of the East River (Dongjiang) catchment, South China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 9690-9701	5.1	25
182	Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. <i>Environmental Pollution</i> , 2017 , 227, 414-427	9.3	44
181	The influence of solvent and pH on determination of the light absorption properties of water-soluble brown carbon. <i>Atmospheric Environment</i> , 2017 , 161, 90-98	5.3	28
180	Occurrence and source apportionment of halogenated flame retardants in the indoor air of Nepalese cities: Implication on human health. <i>Atmospheric Environment</i> , 2017 , 161, 122-131	5.3	23
179	First Assessment of NO Sources at a Regional Background Site in North China Using Isotopic Analysis Linked with Modeling. <i>Environmental Science & Environmental Science & Env</i>	10.3	92
178	Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. <i>Science of the Total Environment</i> , 2017 , 599-600, 114-123	10.2	43
177	Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island. <i>Environmental Pollution</i> , 2017 , 227, 57-63	9.3	10
176	Experimental Study on the Role of Sedimentation and Degradation Processes on Atmospheric Deposition of Persistent Organic Pollutants in a Subtropical Water Column. <i>Environmental Science & Mamp; Technology</i> , 2017 , 51, 4424-4433	10.3	16
175	Possible emissions of POPs in plain and hilly areas of Nepal: Implications for source apportionment and health risk assessment. <i>Environmental Pollution</i> , 2017 , 220, 1289-1300	9.3	29
174	Atmospheric deposition of PBDEs and DPs in Dongjiang River Basin, South China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 3882-3889	5.1	4
173	The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China. <i>Environmental Pollution</i> , 2017 , 231, 173-181	9.3	33
172	Reflection of Stereoselectivity during the Uptake and Acropetal Translocation of Chiral PCBs in Plants in the Presence of Copper. <i>Environmental Science & Environmental Scien</i>	10.3	12
171	Occurrence, ecological risk assessment, and spatio-temporal variation of polychlorinated biphenyls (PCBs) in water and sediments along River Ravi and its northern tributaries, Pakistan. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 27913-27930	5.1	22
170	Novel bacteria capable of degrading phenanthrene in activated sludge revealed by stable-isotope probing coupled with high-throughput sequencing. <i>Biodegradation</i> , 2017 , 28, 423-436	4.1	28

169	New insights into the sources and formation of carbonaceous aerosols in China: potential applications of dual-carbon isotopes. <i>National Science Review</i> , 2017 , 4, 804-806	10.8	14
168	A Review on the Abundance, Distribution and Eco-Biological Risks of PAHs in the Key Environmental Matrices of South Asia. <i>Reviews of Environmental Contamination and Toxicology</i> , 2017 , 240, 1-30	3.5	3
167	Combining Positive Matrix Factorization and Radiocarbon Measurements for Source Apportionment of PM from a National Background Site in North China. <i>Scientific Reports</i> , 2017 , 7, 10648	₃ 4·9	12
166	Passive air sampling of polybrominated diphenyl ethers in New Delhi, Kolkata, Mumbai and Chennai: Levels, homologous profiling and source apportionment. <i>Environmental Pollution</i> , 2017 , 231, 1181-1187	9.3	27
165	Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. <i>Environmental Pollution</i> , 2017 , 231, 654-662	9.3	50
164	Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. <i>Scientific Reports</i> , 2017 , 7, 10398	4.9	48
163	New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure. <i>Chemosphere</i> , 2017 , 184, 1372-1387	8.4	10
162	Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. <i>Environmental Pollution</i> , 2017 , 229, 668-678	9.3	81
161	Characterisation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils and plants around e-waste dismantling sites in southern China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 22173-22182	5.1	10
160	Occurrence and air-soil exchange of organochlorine pesticides and polychlorinated biphenyls at a CAWNET background site in central China: Implications for influencing factors and fate. <i>Chemosphere</i> , 2017 , 186, 475-487	8.4	20
159	E-Waste Driven Pollution in Pakistan: The First Evidence of Environmental and Human Exposure to Flame Retardants (FRs) in Karachi City. <i>Environmental Science & Environmental Environmental</i>	10.3	45
158	Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. <i>Scientific Reports</i> , 2017 , 7, 2692	4.9	24
157	Occurrence, Distribution and Ecological Risks of Fluoroquinolone Antibiotics in the Dongjiang River and the Beijiang River, Pearl River Delta, South China. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2017 , 99, 46-53	2.7	22
156	Polychlorinated biphenyls in Nepalese surface soils: Spatial distribution, air-soil exchange, and soil-air partitioning. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 144, 498-506	7	28
155	Factors influencing the atmospheric concentrations of PCBs at an abandoned e-waste recycling site in South China. <i>Science of the Total Environment</i> , 2017 , 578, 34-39	10.2	20
154	Risk profile and health vulnerability of female workers who pick cotton by organanochlorine pesticides from southern Punjab, Pakistan. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1193-120	1 ^{3.8}	11
153	Legacy and emerging flame retardants (FRs) in the freshwater ecosystem: A review. <i>Environmental Research</i> , 2017 , 152, 26-42	7.9	90
152	Sources of non-fossil-fuel emissions in carbonaceous aerosols during Learly winter in Chinese cities. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11491-11502	6.8	12

151	Occurrence and Concentrations of Halogenated Flame Retardants in the Atmospheric Fine Particles in Chinese Cities. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	81	
150	The Abandoned E-Waste Recycling Site Continued to Act As a Significant Source of Polychlorinated Biphenyls: An in Situ Assessment Using Fugacity Samplers. <i>Environmental Science & Environmental Scie</i>	10.3	17	
149	Radiocarbon-derived source apportionment of fine carbonaceous aerosols before, during, and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4177-4187	4.4	14	
148	Exploring the Influence of Environmental Factors on Bacterial Communities within the Rhizosphere of the Cu-tolerant plant, Elsholtzia splendens. <i>Scientific Reports</i> , 2016 , 6, 36302	4.9	36	
147	Source apportionment of PM_{2.5} at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 11249-11265	6.8	8o	
146	Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6319-6334	6.8	48	
145	Building the new international science of the agricultureflood water Invironment nexus in china and the world. <i>Ecosystem Health and Sustainability</i> , 2016 , 2, e01249	3.7	1	
144	New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan. <i>Environmental Pollution</i> , 2016 , 216, 662-674	9.3	33	
143	The relative abundance and seasonal distribution correspond with the sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River, Pakistan. <i>Environmental Monitoring and Assessment</i> , 2016 , 188, 378	3.1	8	
142	Soil concentrations, occurrence, sources and estimation of air-soil exchange of polychlorinated biphenyls in Indian cities. <i>Science of the Total Environment</i> , 2016 , 562, 928-934	10.2	48	
141	Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan: A human health risk assessment. <i>Science of the Total Environment</i> , 2016 , 541, 1232-1242	10.2	38	
140	Seasonal characteristics and current sources of OCPs and PCBs and enantiomeric signatures of chiral OCPs in the atmosphere of Vietnam. <i>Science of the Total Environment</i> , 2016 , 542, 777-86	10.2	33	
139	Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai, China: seasonal variations, sources, and inhalation exposure. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 5771-81	5.1	19	
138	Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil. <i>Journal of Hazardous Materials</i> , 2016 , 308, 50-7	12.8	46	
137	Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China. <i>Environmental Pollution</i> , 2016 , 212, 1-8	9.3	61	
136	Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution. <i>Chemosphere</i> , 2016 , 152, 292-300	8.4	32	
135	LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. <i>Toxicology in Vitro</i> , 2016 , 34, 35-44	3.6	16	
134	Could Uptake and Acropetal Translocation of PBDEs by Corn Be Enhanced Following Cu Exposure? Evidence from a Root Damage Experiment. <i>Environmental Science & Enhanced Following</i> , 2016 , 50, 856-63	10.3	34	

133	Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 126, 177-185	7	27
132	Distributions and compositions of old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an e-waste contaminated area of South China. <i>Environmental Pollution</i> , 2016 , 208, 619-25	9.3	20
131	DDTs and HCHs in sediment cores from the coastal East China Sea. <i>Science of the Total Environment</i> , 2016 , 539, 388-394	10.2	40
130	Polychlorinated biphenyl (PCBs) in rice grains and straw; risk surveillance, congener specific analysis, distribution and source apportionment from selected districts of Punjab Province, Pakistan. <i>Science of the Total Environment</i> , 2016 , 543, 620-627	10.2	9
129	Presence, deposition flux and mass burden of persistent organic pollutants (POPs) from Mehmood Booti Drain sediments, Lahore. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 125, 9-15	7	13
128	Tracking the fingerprints and combined TOC-black carbon mediated soil-air partitioning of polychlorinated naphthalenes (PCNs) in the Indus River Basin of Pakistan. <i>Environmental Pollution</i> , 2016 , 208, 850-8	9.3	11
127	Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 2603-12	5.1	12
126	Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. <i>Chemosphere</i> , 2016 , 144, 493-502	8.4	58
125	Application of PMF receptor model merging with PAHs signatures for source apportionment of black carbon in the continental shelf surface sediments of the Bohai and Yellow Seas, China. <i>Journal of Geophysical Research: Oceans</i> , 2016 , 121, 1346-1359	3.3	31
124	Spatial Distributions and Seasonal Variations of Dissolved Black Carbon in the Bohai Sea, China. <i>Journal of Coastal Research</i> , 2016 , 74, 214-227	0.6	6
123	First insight into the levels and distribution of flame retardants in potable water in Pakistan: An underestimated problem with an associated health risk diagnosis. <i>Science of the Total Environment</i> , 2016 , 565, 346-359	10.2	37
122	Polychlorinated naphthalenes in the air over the equatorial Indian Ocean: Occurrence, potential sources, and toxicity. <i>Marine Pollution Bulletin</i> , 2016 , 107, 240-244	6.7	4
121	Plant selective uptake of halogenated flame retardants at an e-waste recycling site in southern China. <i>Environmental Pollution</i> , 2016 , 214, 705-712	9.3	21
120	Waste dumping sites as a potential source of POPs and associated health risks in perspective of current waste management practices in Lahore city, Pakistan. <i>Science of the Total Environment</i> , 2016 , 562, 953-961	10.2	36
119	Occurrence, profile and spatial distribution of organochlorines pesticides in soil of Nepal: Implication for source apportionment and health risk assessment. <i>Science of the Total Environment</i> , 2016 , 573, 1598-1606	10.2	46
118	Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil. <i>Journal of Hazardous Materials</i> , 2015 , 286, 379-85	12.8	40
117	A preliminary assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in deep-sea sediments from the Indian Ocean. <i>Marine Pollution Bulletin</i> , 2015 , 94, 323-8	6.7	11
116	Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China. <i>Science of the Total Environment</i> , 2015 , 518-519, 1-7	10.2	34

115	Parent, Alkylated, and Sulfur/Oxygen-Containing Polycyclic Aromatic Hydrocarbons in Mainstream Smoke from 13 Brands of Chinese Cigarettes. <i>Environmental Science & Environmental Science & Environmen</i>	9 ^{10.3}	9
114	Simultaneous enhanced removal of Cu, PCBs, and PBDEs by corn from e-waste-contaminated soil using the biodegradable chelant EDDS. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18203-1	10 ^{5.1}	14
113	Seasonal variations and chemical characteristics of PM(2.5) in Wuhan, central China. <i>Science of the Total Environment</i> , 2015 , 518-519, 97-105	10.2	136
112	Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan. <i>Chemosphere</i> , 2015 , 134, 172-80	8.4	29
111	Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: A challenge to the coal briquetting policy. <i>Environmental Pollution</i> , 2015 , 204, 58-63	9.3	50
110	Characterization and risk assessment of polychlorinated biphenyls in soils and rice tissues in a suburban paddy field of the Pearl River Delta, South China. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 11626-33	5.1	5
109	Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air-soil exchange. <i>Environmental Pollution</i> , 2015 , 204, 74-80	9.3	66
108	Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan. <i>Environmental Pollution</i> , 2015 , 201, 131-40	9.3	42
107	Elevated mobility of persistent organic pollutants in the soil of a tropical rainforest. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	14
106	Emerging issue of e-waste in Pakistan: A review of status, research needs and data gaps. <i>Environmental Pollution</i> , 2015 , 207, 308-18	9.3	76
105	Identification of benzo[a]pyrene-metabolizing bacteria in forest soils by using DNA-based stable-isotope probing. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 7368-76	4.8	70
104	Occurrence, bioaccumulation and risk assessment of dioxin-like PCBs along the Chenab river, Pakistan. <i>Environmental Pollution</i> , 2015 , 206, 688-95	9.3	19
103	Polychlorinated naphthalenes (PCNs) in Chinese forest soil: Will combustion become a major source?. <i>Environmental Pollution</i> , 2015 , 204, 124-32	9.3	12
102	Assessment of the air-soil partitioning of polycyclic aromatic hydrocarbons in a paddy field using a modified fugacity sampler. <i>Environmental Science & Environmental Science</i>	10.3	23
101	Influence of rice growth on the fate of polycyclic aromatic hydrocarbons in a subtropical paddy field: a life cycle study. <i>Chemosphere</i> , 2015 , 119, 1233-1239	8.4	23
100	Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. <i>Science of the Total Environment</i> , 2015 , 502, 426-33	10.2	58
99	Dietary exposure and screening-level risk assessment of polybrominated diphenyl ethers (PBDEs) and dechloran plus (DP) in wheat, rice, soil and air along two tributaries of the River Chenab, Pakistan. <i>Chemosphere</i> , 2015 , 118, 57-64	8.4	37
98	The compact AMS facility at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 361, 72-75	1.2	13

97	Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 957-972	5.9	44
96	Measurements of emission factors of PM2.5, OC, EC, and BC for household stoves of coal combustion in China. <i>Atmospheric Environment</i> , 2015 , 109, 190-196	5.3	91
95	Characterization of the exchange of PBDEs in a subtropical paddy field of China: A significant inputs of PBDEs via air-foliage exchange. <i>Environmental Pollution</i> , 2015 , 205, 1-7	9.3	14
94	Pesticide levels and environmental risk in aquatic environments in ChinaA review. <i>Environment International</i> , 2015 , 81, 87-97	12.9	151
93	Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk. <i>Marine Pollution Bulletin</i> , 2015 , 90, 218-26	6.7	70
92	Human health risk assessment, congener specific analysis and spatial distribution pattern of organochlorine pesticides (OCPs) through rice crop from selected districts of Punjab Province, Pakistan. <i>Science of the Total Environment</i> , 2015 , 511, 354-61	10.2	26
91	Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. <i>Science of the Total Environment</i> , 2015 , 511, 123-37	10.2	335
90	Spatial distribution of old and emerging flame retardants in Chinese forest soils: sources, trends and processes. <i>Environmental Science & Environmental Science & Environment</i>	10.3	63
89	The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers. <i>Environmental Pollution</i> , 2015 , 200, 35-41	9.3	13
88	Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing. <i>PLoS ONE</i> , 2015 , 10, e0130846	3.7	23
87	The impact of polybrominated diphenyl ether prohibition: A case study on the atmospheric levels in China, Japan and South Korea. <i>Atmospheric Research</i> , 2014 , 143, 57-63	5.4	12
86	Organochlorine pesticides (OCPs) in South Asian region: a review. <i>Science of the Total Environment</i> , 2014 , 476-477, 705-17	10.2	161
85	Status, distribution and ecological risk of organochlorines (OCs) in the surface sediments from the Ravi River, Pakistan. <i>Science of the Total Environment</i> , 2014 , 472, 204-11	10.2	54
84	Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs: a case study of Mt. Gongga, eastern Tibetan Plateau. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	47
83	Does an analysis of polychlorinated biphenyl (PCB) distribution in mountain soils across China reveal a latitudinal fractionation paradox?. <i>Environmental Pollution</i> , 2014 , 195, 115-22	9.3	21
82	Investigation of organochlorine pesticides from the Indus Basin, Pakistan: sources, air-soil exchange fluxes and risk assessment. <i>Science of the Total Environment</i> , 2014 , 497-498, 113-122	10.2	54
81	Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan Island, South China. <i>Environmental Science & Environmental Science & </i>	10.3	73
80	Occurrence of polycyclic aromatic hydrocarbons in the Soan River, Pakistan: insights into distribution, composition, sources and ecological risk assessment. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 109, 77-84	7	42

(2013-2014)

79	PCNs (polychlorinated napthalenes): dietary exposure via cereal crops, distribution and screening-level risk assessment in wheat, rice, soil and air along two tributaries of the River Chenab, Pakistan. <i>Science of the Total Environment</i> , 2014 , 481, 409-17	10.2	18
78	Influence of plants on the distribution and composition of PBDEs in soils of an e-waste dismantling area: evidence of the effect of the rhizosphere and selective bioaccumulation. <i>Environmental Pollution</i> , 2014 , 186, 104-9	9.3	36
77	Polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in the equatorial Indian Ocean: temporal trend, continental outflow and air-water exchange. <i>Marine Pollution Bulletin</i> , 2014 , 80, 194-9	6.7	17
76	Impact of agricultural waste burning in the Shandong Peninsula on carbonaceous aerosols in the Bohai Rim, China. <i>Science of the Total Environment</i> , 2014 , 481, 311-6	10.2	36
75	Assessing the relationship and influence of black carbon on distribution status of organochlorines in the coastal sediments from Pakistan. <i>Environmental Pollution</i> , 2014 , 190, 82-90	9.3	39
74	Congener specific analysis, spatial distribution and screening-level risk assessment of polychlorinated naphthalenes in water and sediments from two tributaries of the River Chenab, Pakistan. <i>Science of the Total Environment</i> , 2014 , 485-486, 693-700	10.2	18
73	Human health risk assessment and dietary intake of organochlorine pesticides through air, soil and food crops (wheat and rice) along two tributaries of river Chenab, Pakistan. <i>Food and Chemical Toxicology</i> , 2014 , 71, 17-25	4.7	49
72	The influence of land use on the concentration and vertical distribution of PBDEs in soils of an e-waste recycling region of South China. <i>Environmental Pollution</i> , 2014 , 191, 126-31	9.3	43
71	The distribution and origin of PAHs over the Asian marginal seas, the Indian, and the Pacific Oceans: Implications for outflows from Asia and Africa. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 1949-1961	4.4	16
70	Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: contrasting local- and regional-scale haze events. <i>Environmental Science & Environmental Science</i>	10.3	104
69	Spatial distribution and ecological risk of polychlorinated biphenyls in sediments from Qinzhou Bay, Beibu Gulf of South China. <i>Marine Pollution Bulletin</i> , 2014 , 80, 338-43	6.7	27
68	Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. <i>Journal of Environmental Sciences</i> , 2014 , 26, 810-7	6.4	53
67	Polychlorinated biphenyls (PCBs) in air, soil, and cereal crops along the two tributaries of River Chenab, Pakistan: concentrations, distribution, and screening level risk assessment. <i>Science of the Total Environment</i> , 2014 , 481, 596-604	10.2	32
66	Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange. <i>Science of the Total Environment</i> , 2014 , 470-471, 733-41	10.2	58
65	Perfluoroalkyl acids (PFAAs) in riverine and coastal sediments of Laizhou Bay, North China. <i>Science of the Total Environment</i> , 2013 , 447, 415-23	10.2	56
64	The use of levoglucosan and radiocarbon for source apportionment of PM(2.5) carbonaceous aerosols at a background site in East China. <i>Environmental Science & Eamp; Technology</i> , 2013 , 47, 10454-6	1 ^{10.3}	36
63	Atmospheric polychlorinated biphenyls in Indian cities: levels, emission sources and toxicity equivalents. <i>Environmental Pollution</i> , 2013 , 182, 283-90	9.3	54
62	Triclosan reduces the levels of global DNA methylation in HepG2 cells. <i>Chemosphere</i> , 2013 , 90, 1023-9	8.4	34

61	Levels, profile and distribution of Dechloran Plus (DP) and Polybrominated Diphenyl Ethers (PBDEs) in the environment of Pakistan. <i>Chemosphere</i> , 2013 , 93, 1646-53	8.4	47
60	Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan. <i>Science of the Total Environment</i> , 2013 , 444, 491-7	10.2	96
59	Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate. <i>Environmental Science & Environmental Science &</i>	10.3	114
58	Organochlorine pesticides in the atmosphere and surface water from the equatorial Indian Ocean: enantiomeric signatures, sources, and fate. <i>Environmental Science & Environmental Science & Environme</i>	03 ^{0.3}	44
57	A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers. <i>Atmospheric Environment</i> , 2013 , 73, 16-21	5.3	41
56	Deposition fluxes and fate of polycyclic aromatic hydrocarbons in the Yangtze River estuarine-inner shelf in the East China Sea. <i>Global Biogeochemical Cycles</i> , 2013 , 27, 77-87	5.9	61
55	Influence of monsoon system on HCH fate in Asia: A model study from 1948 to 2008. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 6764-6770	4.4	13
54	Improved correction method for using passive air samplers to assess the distribution of PCNs in the Dongjiang River basin of the Pearl River Delta, South China. <i>Atmospheric Environment</i> , 2012 , 54, 700-705	₅ 5·3	22
53	Levels and spatial distribution of gaseous polychlorinated biphenyls and polychlorinated naphthalenes in the air over the northern South China Sea. <i>Atmospheric Environment</i> , 2012 , 56, 228-235	5.3	26
52	Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: concentration, distribution, source, and risk assessment. <i>Science of the Total Environment</i> , 2012 , 439, 187-93	10.2	131
51	Atmospheric short-chain chlorinated paraffins in China, Japan, and South Korea. <i>Environmental Science & Environmental Science</i>	10.3	85
50	The spatial distribution and potential sources of polycyclic aromatic hydrocarbons (PAHs) over the Asian marginal seas and the Indian and Atlantic Oceans. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-	·n/a	18
49	Passive air monitoring of PCBs and PCNs across East Asia: a comprehensive congener evaluation for source characterization. <i>Chemosphere</i> , 2012 , 86, 718-26	8.4	82
48	Levels, spatial distribution and sources of selected antibiotics in the East River (Dongjiang), South China. <i>Aquatic Ecosystem Health and Management</i> , 2012 , 15, 210-218	1.4	30
47	Sources of polycyclic aromatic hydrocarbons to sediments of the Bohai and Yellow Seas in East Asia. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		53
46	Temporal trends of aliphatic and polyaromatic hydrocarbons in the Bohai Sea, China: Evidence from the sedimentary record. <i>Organic Geochemistry</i> , 2011 , 42, 1181-1193	3.1	64
45	Characterization of PBDEs in soils and vegetations near an e-waste recycling site in South China. <i>Environmental Pollution</i> , 2011 , 159, 2443-8	9.3	128
44	PBDEs in the atmosphere over the Asian marginal seas, and the Indian and Atlantic oceans. Atmospheric Environment, 2011 , 45, 6622-6628	5.3	30

43	Characterization and risk assessment of polychlorinated biphenyls in soils and vegetations near an electronic waste recycling site, South China. <i>Chemosphere</i> , 2011 , 85, 344-50	8.4	70
42	Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. <i>Journal of Hazardous Materials</i> , 2011 , 190, 631-8	12.8	116
41	High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan Province, China. <i>Science Bulletin</i> , 2011 , 56, 877-882		24
40	Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoiglpeat sediments during the last 150 years. <i>Science Bulletin</i> , 2011 , 56, 2456-2463		10
39	Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. <i>Journal of Geophysical Research</i> , 2010 , 115,		78
38	Selected organochlorine pesticides in the atmosphere of major Indian cities: levels, regional versus local variations, and sources. <i>Environmental Science & Environmental Sci</i>	10.3	122
37	Levels and distributions of PBDEs and PCBs in sediments of the Bohai Sea, North China. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 1234-41		47
36	Bioaccumulation and historical deposition of polybrominated diphenyl ethers (PBDEs) in Deep Bay, South China. <i>Marine Environmental Research</i> , 2010 , 70, 219-26	3.3	31
35	Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. <i>Environmental Pollution</i> , 2010 , 158, 3392-400	9.3	50
34	Transport and adsorption of antibiotics by marine sediments in a dynamic environment. <i>Journal of Soils and Sediments</i> , 2009 , 9, 364-373	3.4	66
33	Measurements of black and organic carbon emission factors for household coal combustion in China: implication for emission reduction. <i>Environmental Science & Environmental S</i>	10.3	119
32	Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities. <i>Environmental Science & Environmental Sc</i>	10.3	139
31	Levels and mass burden of DDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paint to the coastal environment of China. <i>Environmental Science & Technology</i> , 2009 , 43, 8033-8	10.3	128
30	Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 1614-24	7	145
29	Evidence of local emission of organochlorine pesticides in the Tibetan plateau. <i>Atmospheric Environment</i> , 2008 , 42, 7397-7404	5.3	37
28	Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	202
27	Accumulation parameters and seasonal trends for PCBs in temperate and boreal forest plant species. <i>Environmental Science & Environmental Science & En</i>	10.3	50
26	Passive air sampling of DDT, chlordane and HCB in the Pearl River Delta, South China: implications to regional sources. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 582-8		62

25	Polycyclic aromatic hydrocarbons (PAHs) in the air of Chinese cities. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1092-8		24
24	Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air-sea exchange. <i>Environmental Science & Environmental Science </i>	10.3	95
23	Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport. <i>Atmospheric Environment</i> , 2007 , 41, 3889-3903	5.3	165
22	The sedimentary fluxes of polycyclic aromatic hydrocarbons in the Yangtze River Estuary coastal sea for the past century. <i>Science of the Total Environment</i> , 2007 , 386, 33-41	10.2	119
21	Spatial and temporal distribution of polycyclic aromatic hydrocarbons in finegrained sediments of the East China Sea. <i>Diqiu Huaxue</i> , 2006 , 25, 8-9		2
20	Six thousand years of records of metal mining and utilization from lake sediments in central China. <i>Diqiu Huaxue</i> , 2006 , 25, 20-20		
19	Heavy metal concentrations and Pb isotopic composition in urban and suburban aerosols of Hong Kong and Guangzhou, South China vidence of the long-range transport of air contaminants. <i>Diqiu Huaxue</i> , 2006 , 25, 123-124		2
18	Assessment of marine pollution in Daya Bay, South China: Nutrients, heavy metals and persistent organic pollutants. <i>Diqiu Huaxue</i> , 2006 , 25, 166-166		
17	Characteristics of organochlorine pesticides, PAHs and PBDEs in the ecosystem of Deep Bay, South China. <i>Diqiu Huaxue</i> , 2006 , 25, 188-188		2
16	Sediment records of persistent organic pollutants (POPs) in relation to regional economic development: A comparison study in both Pearl River Delta and Yangtze River Delta, China. <i>Diqiu Huaxue</i> , 2006 , 25, 188-189		1
15	Polycyclic aromatic hydrocarbon deposition to and exchange at the air-water interface of Luhu, an urban lake in Guangzhou, China. <i>Diqiu Huaxue</i> , 2006 , 25, 189-190		0
14	Organochlorine pesticides in marine environment of Quanzhou Bay, Southeast China. <i>Diqiu Huaxue</i> , 2006 , 25, 190-190		4
13	Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. <i>Science of the Total Environment</i> , 2006 , 372, 215-24	10.2	224
12	High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea. <i>Environmental Science & East China Sea. Environmental Science & East China Sea. East China Sea. Environmental Science & East China Sea. East Chi</i>	10.3	163
11	Passive air sampling of polychlorinated biphenyls, organochlorine compounds, and polybrominated diphenyl ethers across Asia. <i>Environmental Science & Environmental Science & </i>	10.3	283
10	Sedimentary records of DDT and HCH in the Pearl River Delta, South China. <i>Environmental Science & Environmental Science</i>	10.3	299
9	High-resolution sedimentary records of heavy metals in Guangzhou section of the Pearl River, South China. <i>Science Bulletin</i> , 2000 , 45, 110-112		4
8	Molecular organic geochemical peculiarities of lacustrine core sediments in Fildes Peninsula, King George Island, Antarctica. <i>Science Bulletin</i> , 2000 , 45, 67-70		8

LIST OF PUBLICATIONS

7	High-resolution sedimentary record of hydrocarbon contaminants in a core from the major reaches of the Pearl River, China. <i>Science Bulletin</i> , 2000 , 45, 97-104	4
6	Molecular organic geochemical evidence for paleoenvironmental changes at 11.87¶2.28 m in GS-1 sedimentary core, Gucheng Lake, East China. <i>Science Bulletin</i> , 1999 , 44, 1407-1411	10
5	Bound lipids in lacustrine sediments in Guchenghu Lake, East China. <i>Science Bulletin</i> , 1997 , 42, 1817-1820	1
4	The transgression record of the Gucheng Lake in 9.6 ka B.P Science Bulletin, 1997, 42, 1459-1461	1
3	High Contribution of South Asian Biomass Burning to Southeastern Tibetan Plateau Air: New Evidence from Radiocarbon Measurement. <i>Environmental Science and Technology Letters</i> ,	2
2	Determining the Sources and Transport of Brown Carbon Using Radionuclide Tracers and Modeling	1
1	FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT. <i>Radiocarbon</i> ,1-17 4.6	