Luigi E Perotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6707114/publications.pdf Version: 2024-02-01

ILICI E DEDOTT

#	Article	IF	CITATIONS
1	Cardiac Diffusion Tensor Biomarkers of Chronic Infarction Based on In Vivo Data. Applied Sciences (Switzerland), 2022, 12, 3512.	1.3	1
2	Estimating cardiomyofiber strain in vivo by solving a computational model. Medical Image Analysis, 2021, 68, 101932.	7.0	11
3	A Multi-step Machine Learning Approach for Short Axis MR Images Segmentation. Lecture Notes in Computer Science, 2021, , 122-133.	1.0	2
4	Arbitrary Point Tracking with Machine Learning to Measure Cardiac Strains in Tagged MRI. Lecture Notes in Computer Science, 2021, 12738, 213-222.	1.0	5
5	Diffusion Biomarkers in Chronic Myocardial Infarction. Lecture Notes in Computer Science, 2021, 12738, 137-147.	1.0	3
6	Myofiber strain in healthy humans using DENSE and cDTI. Magnetic Resonance in Medicine, 2021, 86, 277-292.	1.9	10
7	Using synthetic data generation to train a cardiac motion tag tracking neural network. Medical Image Analysis, 2021, 74, 102223.	7.0	16
8	Towards a physiologically accurate ECG from numerical simulations: comparative analyses in a simplified tissue model. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000136.	0.2	1
9	Applicability of the lead field approach in virtual laboratory studies: comparison with full numerical simulations based on the bidomain model. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	1
10	Estimating Aggregate Cardiomyocyte Strain Using \$In~Vivo\$ Diffusion and Displacement Encoded MRI. IEEE Transactions on Medical Imaging, 2020, 39, 656-667.	5.4	14
11	Real-time 3T MRI-guided cardiovascular catheterization in a porcine model using a glass-fiber epoxy-based guidewire. PLoS ONE, 2020, 15, e0229711.	1.1	5
12	A Lagrangian formulation for interacting particles on a deformable medium. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112949.	3.4	5
13	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. PLoS ONE, 2020, 15, e0241996.	1.1	13
14	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996.		0
15	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996.		0
16	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996.		0
17	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996.		0
18	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996.		0

Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996. 18

Luigi E Perotti

#	Article	IF	CITATIONS
19	Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. , 2020, 15, e0241996.		0
20	Model of Left Ventricular Contraction: Validation Criteria and Boundary Conditions. Lecture Notes in Computer Science, 2019, 11504, 294-303.	1.0	6
21	High-Resolution Ex Vivo Microstructural MRI After Restoring Ventricular Geometry via 3D Printing. Lecture Notes in Computer Science, 2019, 11504, 177-186.	1.0	8
22	Kirigami and the Caspar-Klug construction for viral shells with negative Gauss curvature. Physical Review E, 2019, 99, 022413.	0.8	2
23	Time resolved displacement-based registration of in vivo cDTI cardiomyocyte orientations. , 2018, 2018, 474-478.		3
24	Method for the unique identification of hyperelastic material properties using fullâ€field measures. Application to the passive myocardium material response. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2866.	1.0	17
25	Ground state instabilities of protein shells are eliminated by buckling. Soft Matter, 2017, 13, 8300-8308.	1.2	5
26	Microstructurally Anchored Cardiac Kinematics by Combining In Vivo DENSE MRI and cDTI. Lecture Notes in Computer Science, 2017, 10263, 381-391.	1.0	11
27	Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation. PLoS Computational Biology, 2016, 12, e1004968.	1.5	19
28	Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology. PLoS ONE, 2014, 9, e114494.	1.1	48