Huan Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6706705/publications.pdf Version: 2024-02-01

		623574	677027
32	518	14	22
papers	citations	h-index	g-index
32	32	32	464
all docs	docs citations	times ranked	citing authors

ΗΠΑΝ ΧΗ

#	Article	IF	CITATIONS
1	Orlistat increases arsenite tolerance in THP-1 derived macrophages through the up-regulation of ABCA1. Drug and Chemical Toxicology, 2022, 45, 274-282.	1.2	3
2	A PET-based fluorescent probe for monitoring labile Fe(<scp>ii</scp>) pools in macrophage activations and ferroptosis. Chemical Communications, 2022, 58, 2979-2982.	2.2	13
3	Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicology and Applied Pharmacology, 2022, 438, 115910.	1.3	5
4	An anthracenecarboximide-guanidine fluorescent probe for selective detection of glyoxals under weak acidic conditions. RSC Advances, 2022, 12, 9473-9477.	1.7	1
5	Arsenite inhibits M2a polarization of macrophages through downregulation of peroxisome proliferator-activated receptor gamma. Toxicology and Applied Pharmacology, 2022, 450, 116142.	1.3	2
6	An "AND―logic-gate-based fluorescent probe with dual reactive sites for monitoring extracellular methylglyoxal level changes of activated macrophages. Chemical Communications, 2021, 57, 8166-8169.	2.2	9
7	A compact fluorescence/circular dichroism dual-modality probe for detection, differentiation, and detoxification of multiple heavy metal ions via bond-cleavage cascade reactions. Chinese Chemical Letters, 2021, 32, 3876-3881.	4.8	12
8	Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2021, 865, 503337.	0.9	1
9	Arsenite and monomethylarsonous acid disrupt erythropoiesis through combined effects on differentiation and survival pathways in early erythroid progenitors. Toxicology Letters, 2021, 350, 111-120.	0.4	6
10	Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere, 2021, 282, 131149.	4.2	12
11	Formaldehyde inhibits development of T lymphocytes in mice. Toxicological and Environmental Chemistry, 2020, 102, 473-489.	0.6	3
12	Inhibition of red blood cell development by arsenic-induced disruption of GATA-1. Scientific Reports, 2020, 10, 19055.	1.6	18
13	Fluorophore-Promoted Facile Deprotonation and Exocyclic Five-Membered Ring Cyclization for Selective and Dynamic Tracking of Labile Glyoxals. Analytical Chemistry, 2020, 92, 13829-13838.	3.2	18
14	Investigation of the Relationship Between H ₂ O ₂ and HClO in Living Cells by a Bifunctional, Dual-ratiometric Responsive Fluorescent Probe. Analytical Chemistry, 2020, 92, 5134-5142.	3.2	56
15	Fluorescent Detection of Dynamic H ₂ O ₂ /H ₂ S Redox Event in Living Cells and Organisms. Analytical Chemistry, 2020, 92, 4387-4394.	3.2	48
16	Mebendazole is a potent inhibitor to chemoresistant T cell acute lymphoblastic leukemia cells. Toxicology and Applied Pharmacology, 2020, 396, 115001.	1.3	10
17	A naphthalimide-aminal-based pH-sensitive fluorescent donor for lysosome-targeted formaldehyde release and fluorescence turn-on readout. Chemical Communications, 2019, 55, 7053-7056.	2.2	16
18	Analyte Regeneration Fluorescent Probes for Formaldehyde Enabled by Regiospecific Formaldehyde-Induced Intramolecularity. Journal of the American Chemical Society, 2018, 140, 16408-16412.	6.6	60

Huan Xu

#	Article	IF	CITATIONS
19	Minimal uranium accumulation in lymphoid tissues following an oral 60-day uranyl acetate exposure in male and female C57BL/6J mice. PLoS ONE, 2018, 13, e0205211.	1.1	14
20	Functional suppression of macrophages derived from THP-1 cells by environmentally-relevant concentrations of arsenite. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 214, 36-42.	1.3	13
21	Monomethylarsonous acid: Induction of DNA damage and oxidative stress in mouse natural killer cells at environmentally-relevant concentrations. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 832-833, 1-6.	0.9	3
22	Toxicity of environmentally-relevant concentrations of arsenic on developing T lymphocyte. Environmental Toxicology and Pharmacology, 2018, 62, 107-113.	2.0	21
23	Efflux Transporters Regulate Arsenite-Induced Genotoxicity in Double Negative and Double Positive T Cells. Toxicological Sciences, 2017, 158, 127-139.	1.4	10
24	Low level arsenite exposures suppress the development of bone marrow erythroid progenitors and result in anemia in adult male mice. Toxicology Letters, 2017, 273, 106-111.	0.4	19
25	Genotoxicity induced by monomethylarsonous acid (MMA +3) in mouse thymic developing T cells. Toxicology Letters, 2017, 279, 60-66.	0.4	14
26	Evaluation of Toxicity in Mouse Bone Marrow Progenitor Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 67, 18.9.1-18.9.12.	1.1	7
27	Environmentally relevant concentrations of arsenite and monomethylarsonous acid inhibit IL-7/STAT5 cytokine signaling pathways in mouse CD3+CD4-CD8- double negative thymus cells. Toxicology Letters, 2016, 247, 62-68.	0.4	16
28	Monomethylarsonous acid (MMA ⁺³) Inhibits IL-7 Signaling in Mouse Pre-B Cells. Toxicological Sciences, 2016, 149, 289-299.	1.4	20
29	Differential sensitivities of bone marrow, spleen and thymus to genotoxicity induced by environmentally relevant concentrations of arsenite. Toxicology Letters, 2016, 262, 55-61.	0.4	26
30	Editor's Highlight: Interactive Genotoxicity Induced by Environmentally Relevant Concentrations of Benzo(a)Pyrene Metabolites and Arsenite in Mouse Thymus Cells. Toxicological Sciences, 2016, 154, 153-161.	1.4	16
31	Environmentally Relevant Concentrations of Arsenite Induce Dose-Dependent Differential Genotoxicity Through Poly(ADP-Ribose) Polymerase Inhibition and Oxidative Stress in Mouse Thymus Cells. Toxicological Sciences, 2016, 149, 31-41.	1.4	24
32	S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite. Oncotarget, 2016, 7, 80482-80492.	0.8	22