Sara E Howden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6706467/publications.pdf Version: 2024-02-01

SADA E HOWDEN

#	Article	IF	CITATIONS
1	Determining lineage relationships in kidney development and disease. Nature Reviews Nephrology, 2022, 18, 8-21.	9.6	8
2	Forward steps in organoid-based forward screening. Cell Stem Cell, 2022, 29, 7-8.	11.1	2
3	DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Medicine, 2022, 14, 19.	8.2	23
4	Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nature Materials, 2021, 20, 260-271.	27.5	230
5	Recessive <i>NOS1AP</i> variants impair actin remodeling and cause glomerulopathy in humans and mice. Science Advances, 2021, 7, .	10.3	21
6	In Vivo Survival and Differentiation of Friedreich Ataxia iPSC-Derived Sensory Neurons Transplanted in the Adult Dorsal Root Ganglia. Stem Cells Translational Medicine, 2021, 10, 1157-1169.	3.3	4
7	Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. Cell Stem Cell, 2021, 28, 671-684.e6.	11.1	72
8	Generating an iPSC line (with isogenic control) from the PBMCs of an ACTA1 (p.Gly148Asp) nemaline myopathy patient. Stem Cell Research, 2021, 54, 102429.	0.7	3
9	Particle-mediated delivery of frataxin plasmid to a human sensory neuronal model of Friedreich's ataxia. Biomaterials Science, 2020, 8, 2398-2403.	5.4	6
10	Generating Kidney Organoids from Human Pluripotent Stem Cells Using Defined Conditions. Methods in Molecular Biology, 2020, 2155, 183-192.	0.9	6
11	Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development (Cambridge), 2019, 146, .	2.5	203
12	A Toolbox to Characterize Human Induced Pluripotent Stem Cell–Derived Kidney Cell Types and Organoids. Journal of the American Society of Nephrology: JASN, 2019, 30, 1811-1823.	6.1	45
13	The use of simultaneous reprogramming and gene correction to generate an osteogenesis imperfecta patient COL1A1 c. 3936 G>T iPSC line and an isogenic control iPSC line. Stem Cell Research, 2019, 38, 101453.	0.7	8
14	Direct reprogramming to human nephron progenitor-like cells using inducible piggyBac transposon expression of SNAI2-EYA1-SIX1. Kidney International, 2019, 95, 1153-1166.	5.2	21
15	Reporterâ€based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Reports, 2019, 20, .	4.5	52
16	Evaluation of variability in human kidney organoids. Nature Methods, 2019, 16, 79-87.	19.0	176
17	Simultaneous reprogramming and gene editing of human fibroblasts. Nature Protocols, 2018, 13, 875-898.	12.0	55
18	Patient-iPSC-Derived Kidney Organoids Show Functional Validation of a Ciliopathic Renal Phenotype and Reveal Underlying Pathogenetic Mechanisms. American Journal of Human Genetics, 2018, 102, 816-831.	6.2	157

Sara E Howden

#	Article	IF	CITATIONS
19	Renal Subcapsular Transplantation of PSC-Derived Kidney Organoids Induces Neo-vasculogenesis and Significant Glomerular and Tubular Maturation InÂVivo. Stem Cell Reports, 2018, 10, 751-765.	4.8	304
20	A Novel Approach to Single Cell RNA-Sequence Analysis Facilitates In Silico Gene Reporting of Human Pluripotent Stem Cell-Derived Retinal Cell Types. Stem Cells, 2018, 36, 313-324.	3.2	54
21	Functional Assessment of Patient-Derived Retinal Pigment Epithelial Cells Edited by CRISPR/Cas9. International Journal of Molecular Sciences, 2018, 19, 4127.	4.1	20
22	3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nature Communications, 2018, 9, 5167.	12.8	175
23	Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. Stem Cells and Development, 2017, 26, 1225-1235.	2.1	30
24	ALPK3-deficient cardiomyocytes generated from patient-derived induced pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling and establish that ALPK3 deficiency underlies familial cardiomyopathy. European Heart Journal, 2016, 37, 2586-2590.	2.2	49
25	GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports, 2016, 7, 518-526.	4.8	27
26	A Cas9 Variant for Efficient Generation of Indel-Free Knockin or Gene-Corrected Human Pluripotent Stem Cells. Stem Cell Reports, 2016, 7, 508-517.	4.8	88
27	Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts. Stem Cell Reports, 2015, 5, 1109-1118.	4.8	89
28	Site-specific Integration of Bacterial Artificial Chromosomes into Human Cells. Methods in Molecular Biology, 2015, 1227, 309-321.	0.9	0
29	Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation. Human Molecular Genetics, 2014, 23, 6332-6344.	2.9	55
30	Gene Targeting of Human Pluripotent Stem Cells by Homologous Recombination. Methods in Molecular Biology, 2014, 1114, 37-55.	0.9	5
31	Efficient genome engineering in human pluripotent stem cells using Cas9 from <i>Neisseria meningitidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15644-15649.	7.1	612
32	Phosphorylation regulates human OCT4. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7162-7168.	7.1	87
33	Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 2011, 8, 424-429.	19.0	1,234
34	Optic Vesicle-like Structures Derived from Human Pluripotent Stem Cells Facilitate a Customized Approach to Retinal Disease Treatment. Stem Cells, 2011, 29, 1206-1218.	3.2	413
35	Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6537-6542.	7.1	150
36	Chromatin-Binding Regions of EBNA1 Protein Facilitate the Enhanced Transfection of Epstein–Barr Virus-Based Vectors. Human Gene Therapy, 2006, 17, 833-844.	2.7	17