Yang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6706266/publications.pdf

Version: 2024-02-01

68	2,840	29 h-index	51
papers	citations		g-index
109	109	109	3638
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simulated impacts of vertical distributions of black carbon aerosol on meteorology and PM _{2.5} concentrations in Beijing during severe haze events. Atmospheric Chemistry and Physics, 2022, 22, 1825-1844.	1.9	6
2	Sulfur emissions from consumption by developed and developing countries produce comparable climate impacts. Nature Geoscience, 2022, 15, 184-189.	5 . 4	3
3	ENSO modulation of summertime tropospheric ozone over China. Environmental Research Letters, 2022, 17, 034020.	2.2	20
4	Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nature Communications, 2022, 13, 959.	5.8	35
5	Impacts of strong El Ni $ ilde{A}\pm$ o on summertime near-surface ozone over China. Atmospheric and Oceanic Science Letters, 2022, , 100193.	0.5	4
6	Projected Aerosol Changes Driven by Emissions and Climate Change Using a Machine Learning Method. Environmental Science & Envi	4.6	15
7	Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	5
8	North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures. Atmospheric Chemistry and Physics, 2022, 22, 4705-4719.	1.9	29
9	Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 2022, 15, 349-355.	5.4	37
10	Impact of Aerosol Radiative Effect on the Diurnal Cycle of Summer Precipitation Over North China: Distinct Results From Simulations With Parameterized Versus Explicit Convection. Geophysical Research Letters, 2022, 49, .	1.5	3
11	Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017. Atmospheric Chemistry and Physics, 2022, 22, 7131-7142.	1.9	13
12	Widespread Wildfires Over the Western United States in 2020 Linked to Emissions Reductions During COVIDâ€19. Geophysical Research Letters, 2022, 49, .	1.5	6
13	Simulated aging processes of black carbon and its impact during a severe winter haze event in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 755, 142712.	3.9	11
14	Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmospheric Research, 2021, 249, 105363.	1.8	59
15	Enhanced PM 2.5 Decreases and O 3 Increases in China During COVIDâ€19 Lockdown by Aerosolâ€Radiation Feedback. Geophysical Research Letters, 2021, 48, e2020GL090260.	1.5	15
16	Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia. Environmental Pollution, 2021, 273, 115778.	3.7	13
17	Intensified Humid Heat Events Under Global Warming. Geophysical Research Letters, 2021, 48, e2020GL091462.	1.5	17
18	An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast $\hat{a} \in Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032592.$	1.2	18

#	Article	IF	CITATIONS
19	Constructing a spatiotemporally coherent long-term PM2.5 concentration dataset over China during 1980–2019 using a machine learning approach. Science of the Total Environment, 2021, 765, 144263.	3.9	37
20	The Climate Response to Emissions Reductions Due to COVIDâ€19: Initial Results From CovidMIP. Geophysical Research Letters, 2021, 48, e2020GL091883.	1.5	43
21	Intensified modulation of winter aerosol pollution in China by El Ni $ ilde{A}$ ±0 with short duration. Atmospheric Chemistry and Physics, 2021, 21, 10745-10761.	1.9	14
22	Reduced light absorption of black carbon (BC) and its influence on BC-boundary-layer interactions during "APEC Blue― Atmospheric Chemistry and Physics, 2021, 21, 11405-11421.	1.9	10
23	Indirect contributions of global fires to surface ozone through ozone–vegetation feedback. Atmospheric Chemistry and Physics, 2021, 21, 11531-11543.	1.9	5
24	Identifying the Drivers of Modeling Uncertainties in Isoprene Emissions: Schemes Versus Meteorological Forcings. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034242.	1.2	0
25	Ensemble projection of global isoprene emissions by the end of 21st century using CMIP6 models. Atmospheric Environment, 2021, 267, 118766.	1.9	9
26	Improved gridded ammonia emission inventory in China. Atmospheric Chemistry and Physics, 2021, 21, 15883-15900.	1.9	31
27	Aerosol transport pathways and source attribution in China during the COVID-19 outbreak. Atmospheric Chemistry and Physics, 2021, 21, 15431-15445.	1.9	8
28	Atmospheric Circulation Patterns Conducive to Severe Haze in Eastern China Have Shifted Under Climate Change. Geophysical Research Letters, 2021, 48, e2021GL095011.	1.5	11
29	Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001851.	1.3	68
30	Meteorological influences on PM2.5 and O3 trends and associated health burden since China's clean air actions. Science of the Total Environment, 2020, 744, 140837.	3.9	98
31	Fast Climate Responses to Aerosol Emission Reductions During the COVIDâ€19 Pandemic. Geophysical Research Letters, 2020, 47, e2020GL089788.	1.5	51
32	Trends and source apportionment of aerosols in Europe during 1980–2018. Atmospheric Chemistry and Physics, 2020, 20, 2579-2590.	1.9	20
33	Persistent ozone pollution episodes in North China exacerbated by regional transport. Environmental Pollution, 2020, 265, 115056.	3.7	63
34	Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmospheric Chemistry and Physics, 2020, 20, 139-161.	1.9	38
35	Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018. Atmospheric Chemistry and Physics, 2020, 20, 9067-9085.	1.9	40
36	New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002266.	1.3	15

#	Article	IF	Citations
37	Interannual and Decadal Changes in Tropospheric Ozone in China and the Associated Chemistry-Climate Interactions: A Review. Advances in Atmospheric Sciences, 2019, 36, 975-993.	1.9	51
38	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 2019, 19, 8591-8617.	1.9	60
39	The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.	1.3	112
40	An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2377-2411.	1.3	168
41	Black Carbon Increases Frequency of Extreme ENSO Events. Journal of Climate, 2019, 32, 8323-8333.	1.2	11
42	Variability, timescales, and nonlinearity in climate responses to black carbon emissions. Atmospheric Chemistry and Physics, 2019, 19, 2405-2420.	1.9	34
43	Impact of Anthropogenic Emission Injection Height Uncertainty on Global Sulfur Dioxide and Aerosol Distribution. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4812-4826.	1.2	13
44	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	1.3	404
45	Black Carbon Amplifies Haze Over the North China Plain by Weakening the East Asian Winter Monsoon. Geophysical Research Letters, 2019, 46, 452-460.	1.5	49
46	Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China. Geophysical Research Letters, 2018, 45, 2072-2081.	1.5	71
47	Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 2018, 8, 2107.	1.6	48
48	Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1899-1918.	1.2	38
49	Local Radiative Feedbacks Over the Arctic Based on Observed Shortâ€√erm Climate Variations. Geophysical Research Letters, 2018, 45, 5761-5770.	1.5	26
50	Source Apportionments of Aerosols and Their Direct Radiative Forcing and Longâ€Term Trends Over Continental United States. Earth's Future, 2018, 6, 793-808.	2.4	42
51	Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Communications, 2017, 8, 15333.	5.8	105
52	Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8761-8780.	1.2	12
53	Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2734-2749.	1.2	22
54	Interannual variation, decadal trend, and future change in ozone outflow from East Asia. Atmospheric Chemistry and Physics, 2017, 17, 3729-3747.	1.9	20

#	Article	IF	Citations
55	Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 2017, 17, 4319-4336.	1.9	76
56	Global source attribution of sulfate concentration and direct and indirect radiative forcing. Atmospheric Chemistry and Physics, 2017, 17, 8903-8922.	1.9	58
57	Changes in Sea Salt Emissions Enhance ENSO Variability. Journal of Climate, 2016, 29, 8575-8588.	1.2	12
58	Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,050.	1.2	159
59	Impacts of the East Asian Monsoon on springtime dust concentrations over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8137-8152.	1.2	16
60	Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6321-6335.	1.2	23
61	DMS role in ENSO cycle in the tropics. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,537.	1.2	10
62	Rainâ€aerosol relationships influenced by wind speed. Geophysical Research Letters, 2016, 43, 2267-2274.	1.5	14
63	Climatic effects of air pollutants over china: A review. Advances in Atmospheric Sciences, 2015, 32, 115-139.	1.9	82
64	Decadal trend and interannual variation of outflow of aerosols from East Asia: Roles of variations in meteorological parameters and emissions. Atmospheric Environment, 2015, 100, 141-153.	1.9	62
65	Simulation of the interannual variations of tropospheric ozone over China: Roles of variations in meteorological parameters and anthropogenic emissions. Atmospheric Environment, 2015, 122, 839-851.	1.9	50
66	Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China. Atmospheric Chemistry and Physics, 2014, 14, 6867-6879.	1.9	102
67	Future changes in the meteorological potential for winter haze over Beijing during periods of peak carbon emissions and carbon neutrality in China projected by Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 0, , .	1.5	6
68	Simulated Impacts of Sulfate and Nitrate Aerosol Formation on Surface-Layer Ozone Concentrations in China. , 0, .		3