Boris Turk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705842/publications.pdf Version: 2024-02-01

RODIS TUDE

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	Targeting proteases: successes, failures and future prospects. Nature Reviews Drug Discovery, 2006, 5, 785-799.	21.5	1,149
3	Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 68-88.	1.1	990
4	Lysosomal cysteine proteases: more than scavengers. BBA - Proteins and Proteomics, 2000, 1477, 98-111.	2.1	685
5	Lysosomal Protease Pathways to Apoptosis. Journal of Biological Chemistry, 2001, 276, 3149-3157.	1.6	576
6	Selective Disruption of Lysosomes in HeLa Cells Triggers Apoptosis Mediated by Cleavage of Bid by Multiple Papain-like Lysosomal Cathepsins. Journal of Biological Chemistry, 2004, 279, 3578-3587.	1.6	412
7	Emerging Roles of Cysteine Cathepsins in Disease and their Potential as Drug Targets. Current Pharmaceutical Design, 2007, 13, 387-403.	0.9	398
8	Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 2011, 6, 594-602.	15.6	358
9	Lysosomes and lysosomal cathepsins in cell death. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 22-33.	1.1	333
10	Cysteine Cathepsins Trigger Caspase-dependent Cell Death through Cleavage of Bid and Antiapoptotic Bcl-2 Homologues. Journal of Biological Chemistry, 2008, 283, 19140-19150.	1.6	327
11	Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Research Reviews, 2016, 32, 22-37.	5.0	280
12	Cysteine cathepsins and extracellular matrix degradation. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2560-2570.	1.1	255
13	Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells, 2019, 8, 264.	1.8	255
14	Protease signalling: the cutting edge. EMBO Journal, 2012, 31, 1630-1643.	3.5	242
15	Lysosomes as "Suicide Bags―in Cell Death: Myth or Reality?. Journal of Biological Chemistry, 2009, 284, 21783-21787.	1.6	233
16	Regulating Cysteine Protease Activity: Essential Role of Protease Inhibitors As Guardians and Regulators. Current Pharmaceutical Design, 2002, 8, 1623-1637.	0.9	221
17	Revised Definition of Substrate Binding Sites of Papain-Like Cysteine Proteases. Biological Chemistry, 1998, 379, 137-148.	1.2	218
18	Apoptotic Pathways: Involvement of Lysosomal Proteases. Biological Chemistry, 2002, 383, 1035-44.	1.2	179

#	Article	IF	CITATIONS
19	Lysosomal pathways to cell death and their therapeutic applications. Experimental Cell Research, 2012, 318, 1245-1251.	1.2	179
20	Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Letters, 2007, 581, 2761-2767.	1.3	174
21	Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion, 2014, 19, 49-57.	1.6	164
22	Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Advances in Enzyme Regulation, 2002, 42, 285-303.	2.9	160
23	Human Recombinant Pro-dipeptidyl Peptidase I (Cathepsin C) Can Be Activated by Cathepsins L and S but Not by Autocatalytic Processing. Biochemistry, 2001, 40, 1671-1678.	1.2	155
24	Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion, 2010, 10, 662-669.	1.6	148
25	Autophagy in protists. Autophagy, 2011, 7, 127-158.	4.3	148
26	Cysteine cathepsins (proteases)—On the main stage of cancer?. Cancer Cell, 2004, 5, 409-410.	7.7	147
27	The Future of Cysteine Cathepsins in Disease Management. Trends in Pharmacological Sciences, 2017, 38, 873-898.	4.0	146
28	Kinetics of the pH-induced inactivation of human cathepsin L. Biochemistry, 1993, 32, 375-380.	1.2	133
29	Autophagy Is Involved in Nutritional Stress Response and Differentiation in Trypanosoma cruzi. Journal of Biological Chemistry, 2008, 283, 3454-3464.	1.6	127
30	Comprehensive search for cysteine cathepsins in the human genome. Biological Chemistry, 2004, 385, 363-72.	1.2	126
31	Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumour invasion. Biochimie, 2008, 90, 380-386.	1.3	118
32	Lysosomal cysteine cathepsins: signaling pathways in apoptosis. Biological Chemistry, 2007, 388, 555-60.	1.2	117
33	Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Experimental Cell Research, 2005, 306, 103-113.	1.2	115
34	Oligomeric Structure and Substrate Induced Inhibition of Human Cathepsin C. Journal of Biological Chemistry, 1995, 270, 21626-21631.	1.6	112
35	The Oligosaccharide Side Chain on Asn-135 of α-Antithrombin, Absent in β-Antithrombin, Decreases the Heparin Affinity of the Inhibitor by Affecting the Heparin-Induced Conformational Change. Biochemistry, 1997, 36, 6682-6691.	1.2	110
36	The Endolysosomal System in Cell Death and Survival. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008755-a008755.	2.3	110

#	Article	IF	CITATIONS
37	Cathepsin Cleavage of Sirtuin 1 in Endothelial Progenitor Cells Mediates Stress-Induced Premature Senescence. American Journal of Pathology, 2012, 180, 973-983.	1.9	107
38	Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biology, 2019, 75-76, 141-159.	1.5	106
39	Production and activation of recombinant papain-like cysteine proteases. Methods, 2004, 32, 199-206.	1.9	104
40	New Uses for Old Drugs: Attempts to Convert Quinolone Antibacterials into Potential Anticancer Agents Containing Ruthenium. Inorganic Chemistry, 2013, 52, 9039-9052.	1.9	102
41	Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biological Chemistry, 2010, 391, 571-579.	1.2	101
42	Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Letters, 1999, 459, 358-362.	1.3	100
43	Regulation of the Activity of Lysosomal Cysteine Proteinases by pH-Induced Inactivation and/or Endogenous Protein Inhibitors, Cystatins. Biological Chemistry Hoppe-Seyler, 1995, 376, 225-230.	1.4	97
44	Equistatin, a New Inhibitor of Cysteine Proteinases fromActinia equina, Is Structurally Related to Thyroglobulin Type-1 Domain. Journal of Biological Chemistry, 1997, 272, 13899-13903.	1.6	97
45	Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biochemical Pharmacology, 2008, 75, 1601-1609.	2.0	94
46	Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Letters, 2005, 579, 1285-1290.	1.3	91
47	Metacaspases of Trypanosoma cruzi: Possible candidates for programmed cell death mediators. Molecular and Biochemical Parasitology, 2006, 145, 18-28.	0.5	91
48	Stefin B Interacts with Histones and Cathepsin L in the Nucleus. Journal of Biological Chemistry, 2010, 285, 10078-10086.	1.6	89
49	Lysosomal Cysteine Proteases: Structural Features and their Role in Apoptosis. IUBMB Life, 2005, 57, 347-353.	1.5	88
50	Glycosaminoglycans Facilitate Procathepsin B Activation through Disruption of Propeptide-Mature Enzyme Interactions. Journal of Biological Chemistry, 2007, 282, 33076-33085.	1.6	86
51	Proteomic Identification of Cysteine Cathepsin Substrates Shed from the Surface of Cancer Cells. Molecular and Cellular Proteomics, 2015, 14, 2213-2228.	2.5	82
52	Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Structure, 2000, 8, 305-313.	1.6	79
53	Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS Journal, 2009, 276, 660-668.	2.2	78
54	Human Cathepsin B Is a Metastable Enzyme Stabilized by Specific Ionic Interactions Associated with the Active Site. Biochemistry, 1994, 33, 14800-14806.	1.2	77

#	Article	IF	CITATIONS
55	Chapter Nine Lysosomes in Apoptosis. Methods in Enzymology, 2008, 442, 183-199.	0.4	74
56	Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS Journal, 2005, 272, 1535-1545.	2.2	73
57	Selective Activityâ€Based Probes for Cysteine Cathepsins. Angewandte Chemie - International Edition, 2008, 47, 406-409.	7.2	72
58	The Alkyne Moiety as a Latent Electrophile in Irreversible Covalent Small Molecule Inhibitors of Cathepsin K. Journal of the American Chemical Society, 2019, 141, 3507-3514.	6.6	72
59	Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as carboxymonopeptidase or carboxydipeptidase. FEBS Journal, 2000, 267, 5404-5412.	0.2	70
60	Carboxypeptidase cathepsin X mediates β2-integrin-dependent adhesion of differentiated U-937 cells. Experimental Cell Research, 2006, 312, 2515-2527.	1.2	70
61	Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines. Journal of Biological Chemistry, 2015, 290, 13800-13811.	1.6	66
62	A Role for Stefin B (Cystatin B) in Inflammation and Endotoxemia. Journal of Biological Chemistry, 2014, 289, 31736-31750.	1.6	64
63	Selective imaging of cathepsinÂL in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9, 2113-2129.	3.7	64
64	Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget, 2015, 6, 19027-19042.	0.8	64
65	Acidic pH as a physiological regulator of human cathepsin L activity. FEBS Journal, 2001, 259, 926-932.	0.2	62
66	Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biological Chemistry, 2010, 391, 923-35.	1.2	62
67	Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics, 2012, 31, 5867-5874.	1.1	62
68	Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsinâ€B Inhibitor. Angewandte Chemie - International Edition, 2014, 53, 10077-10081.	7.2	60
69	Protease cleavage site fingerprinting by labelâ€free inâ€gel degradomics reveals <scp>pH</scp> â€dependent specificity switch of legumain. EMBO Journal, 2017, 36, 2455-2465.	3.5	58
70	Emerging Roles of Cysteine Cathepsins in Disease and their Potential as Drug Targets. Current Pharmaceutical Design, 2007, 13, 385-401.	0.9	56
71	Cysteine protease cathepsin X modulates immune response via activation of β ₂ integrins. Immunology, 2008, 124, 76-88.	2.0	53
72	Inâ€Vivo Imaging of Mouse Tumors by a Lipidated Cathepsinâ€S Substrate. Angewandte Chemie - International Edition, 2014, 53, 7669-7673.	7.2	53

#	Article	IF	CITATIONS
73	Cathepsin X binds to cell surface heparan sulfate proteoglycans. Archives of Biochemistry and Biophysics, 2005, 436, 323-332.	1.4	52
74	Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics - Clinical Applications, 2014, 8, 416-426.	0.8	51
75	Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells. PLoS ONE, 2015, 10, e0137878.	1.1	51
76	Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Scientific Reports, 2017, 7, 43135.	1.6	51
77	Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery. Trends in Biochemical Sciences, 2018, 43, 829-844.	3.7	51
78	Protean proteases: at the cutting edgeÂofÂlung diseases. European Respiratory Journal, 2017, 49, 1501200.	3.1	49
79	Detecting cathepsin activity in human osteoarthritis via activity-based probes. Arthritis Research and Therapy, 2015, 17, 69.	1.6	48
80	Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chemical Science, 2019, 10, 8461-8477.	3.7	47
81	Recombinant Human Cathepsin H Lacking the Mini Chain Is an Endopeptidase. Biochemistry, 2003, 42, 13522-13528.	1.2	46
82	Photodynamic Quenched Cathepsin Activity Based Probes for Cancer Detection and Macrophage Targeted Therapy. Theranostics, 2015, 5, 847-862.	4.6	46
83	Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biological Chemistry, 2017, 398, 289-301.	1.2	46
84	Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation. Bioorganic and Medicinal Chemistry, 2011, 19, 1055-1061.	1.4	45
85	Cysteine Cathepsin Activity Regulation by Glycosaminoglycans. BioMed Research International, 2014, 2014, 1-9.	0.9	45
86	Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chemical Biology, 2016, 23, 1023-1035.	2.5	45
87	Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology, 2010, 131, 257-267.	2.0	44
88	Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics, 2015, 15, 2479-2490.	1.3	44
89	Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics. Molecular and Cellular Proteomics, 2016, 15, 2515-2524.	2.5	43
90	Cathepsin Protease Controls Copper and Cisplatin Accumulation via Cleavage of the Ctr1 Metal-binding Ectodomain. Journal of Biological Chemistry, 2016, 291, 13905-13916.	1.6	41

#	Article	IF	CITATIONS
91	Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118782.	1.9	41
92	Interaction of Cystatin C Variants with Papain and Human Cathepsins B, H and L. Journal of Enzyme Inhibition and Medicinal Chemistry, 1999, 14, 167-174.	0.5	40
93	DNA Accelerates the Inhibition of Human Cathepsin V by Serpins. Journal of Biological Chemistry, 2007, 282, 36980-36986.	1.6	40
94	Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells. Biological Chemistry, 2007, 388, 1141-9.	1.2	40
95	Blocking autophagy to prevent parasite differentiation: A possible new strategy for fighting parasitic infections?. Autophagy, 2008, 4, 361-363.	4.3	40
96	Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target. Frontiers in Pharmacology, 2012, 3, 133.	1.6	40
97	In vivo imaging of Lactococcus lactis, Lactobacillus plantarum and Escherichia coli expressing infrared fluorescent protein in mice. Microbial Cell Factories, 2015, 14, 181.	1.9	40
98	Non-invasive <i>in vivo</i> imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Theranostics, 2017, 7, 2806-2821.	4.6	40
99	A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites. International Journal of Biochemistry and Cell Biology, 2009, 41, 1601-1612.	1.2	39
100	The Region of Antithrombin Interacting with Full-Length Heparin Chains Outside the High-Affinity Pentasaccharide Sequence Extends to Lys136 but Not to Lys139â€. Biochemistry, 2000, 39, 8512-8518.	1.2	38
101	Current trends and challenges in proteomic identification of protease substrates. Biochimie, 2016, 122, 77-87.	1.3	38
102	Selective and Sensitive Monitoring of Caspase-1 Activity by a Novel Bioluminescent Activity-Based Probe. Chemistry and Biology, 2010, 17, 999-1007.	6.2	37
103	Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C. Amino Acids, 2014, 46, 931-943.	1.2	37
104	Papain-like lysosomal cysteine proteases and their inhibitors: drug discovery targets?. Biochemical Society Symposia, 2003, 70, 15-30.	2.7	37
105	Nuclear RNA foci from <i>C9ORF72</i> expansion mutation form paraspeckle-like bodies. Journal of Cell Science, 2019, 132, .	1.2	36
106	Identification of bovine stefin A, a novel protein inhibitor of cysteine proteinases. FEBS Letters, 1995, 360, 101-105.	1.3	34
107	High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen. Protein Science, 1995, 4, 1874-1880.	3.1	33
108	Covalent Binding of Heparin to Functionalized PET Materials for Improved Haemocompatibility. Materials, 2015, 8, 1526-1544.	1.3	33

#	Article	IF	CITATIONS
109	Crumpled Aluminum Hydroxide Nanostructures as a Microenvironment Dysregulation Agent for Cancer Treatment. Nano Letters, 2018, 18, 5401-5410.	4.5	33
110	Kinetics of inhibition of bovine cathepsin S by bovine stefin B. FEBS Letters, 1994, 339, 155-159.	1.3	32
111	High-molecular-weight kininogen binds two molecules of cysteine proteinases with different rate constants. FEBS Letters, 1996, 391, 109-112.	1.3	32
112	A Role for Serglycin Proteoglycan in Mast Cell Apoptosis Induced by a Secretory Granule-mediated Pathway*. Journal of Biological Chemistry, 2011, 286, 5423-5433.	1.6	32
113	Recombinant human cathepsin X is a carboxymonopeptidase only: a comparison with cathepsins B and L. Biological Chemistry, 2005, 386, 1191-5.	1.2	30
114	Designing Ga(<scp>iii</scp>)-containing hydroxyapatite with antibacterial activity. RSC Advances, 2016, 6, 112839-112852.	1.7	30
115	Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nature Microbiology, 2020, 5, 1119-1133.	5.9	30
116	Cathepsin D—Managing the Delicate Balance. Pharmaceutics, 2021, 13, 837.	2.0	30
117	Decreased ILâ€10 expression in stefin Bâ€deficient macrophages is regulated by the MAP kinase and STATâ€3 signaling pathways. FEBS Letters, 2014, 588, 720-726.	1.3	29
118	Hydroxyapatite/platinum bio-photocatalyst: a biomaterial approach to self-cleaning. Journal of Materials Chemistry, 2012, 22, 10571.	6.7	28
119	The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biological Chemistry, 2013, 394, 307-316.	1.2	28
120	Cathepsin nanofiber substrates as potential agents for targeted drug delivery. Journal of Controlled Release, 2017, 257, 60-67.	4.8	28
121	Sensitization of stefin B-deficient thymocytes towards staurosporin-induced apoptosis is independent of cysteine cathepsins. FEBS Letters, 2005, 579, 2149-2155.	1.3	27
122	Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. Journal of the American Chemical Society, 2020, 142, 16704-16715.	6.6	27
123	Crystallographic and Fluorescence Studies of Ligand Binding toN-Carbamoylsarcosine Amidohydrolase fromArthrobactersp Journal of Molecular Biology, 1996, 263, 269-283.	2.0	26
124	The Use of Lysosomotropic Dyes to Exclude Lysosomal Membrane Permeabilization. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot087106.	0.2	26
125	Affinity selection to papain yields potent peptide inhibitors of cathepsins L, B, H, and K. Biochemical and Biophysical Research Communications, 2005, 332, 897-903.	1.0	24
126	Cleavage of MAGI-1, a tight junction PDZ protein, by caspases is an important step for cell-cell detachment in apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 343-354.	2.2	24

#	Article	IF	CITATIONS
127	Development of <i>N</i> -(Functionalized benzoyl)-homocycloleucyl-glycinonitriles as Potent Cathepsin K Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6928-6937.	2.9	24
128	Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea. Microbial Cell Factories, 2016, 15, 93.	1.9	24
129	Host cell-surface proteins as substrates of gingipains, the main proteases of <i>Porphyromonas gingivalis</i> . Biological Chemistry, 2018, 399, 1353-1361.	1.2	24
130	Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opinion on Therapeutic Targets, 2020, 24, 573-588.	1.5	24
131	Interaction of human cathepsin C with chicken cystatin. FEBS Letters, 1996, 392, 277-280.	1.3	23
132	Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget, 2017, 8, 73793-73809.	0.8	22
133	Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 2017, 7, 288.	1.8	21
134	hDLG/SAP97, a member of the MAGUK protein family, is a novel caspase target during cell-cell detachment in apoptosis. Biological Chemistry, 2005, 386, 705-10.	1.2	20
135	Cysteine cathepsins are not critical for TRAIL- and CD95-induced apoptosis in several human cancer cell lines. Biological Chemistry, 2012, 393, 1417-1431.	1.2	20
136	IQGAP-related protein lqgC suppresses Ras signaling during large-scale endocytosis. Proceedings of the United States of America, 2019, 116, 1289-1298.	3.3	19
137	A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Scientific Reports, 2020, 10, 10563.	1.6	19
138	Endoglin (CD105) Silencing Mediated by shRNA Under the Control of Endothelin-1 Promoter for Targeted Gene Therapy of Melanoma. Molecular Therapy - Nucleic Acids, 2015, 4, e239.	2.3	18
139	The Acute Phase Response Is a Prominent Renal Proteome Change in Sepsis in Mice. International Journal of Molecular Sciences, 2020, 21, 200.	1.8	18
140	Characterization of Cystatin C from Bovine Parotid Glands: Cysteine Proteinase Inhibition and Antiviral Properties. Biological Chemistry Hoppe-Seyler, 1996, 377, 19-24.	1.4	17
141	Strategies for Assaying Lysosomal Membrane Permeabilization. Cold Spring Harbor Protocols, 2016, 2016, pdb.top077479.	0.2	17
142	Intracellular cathepsin C levels determine sensitivity of cells to leucylâ€leucine methyl esterâ€ŧriggered apoptosis. FEBS Journal, 2020, 287, 5148-5166.	2.2	17
143	Isolation and Characterization of Bovine Stefin B. Biological Chemistry Hoppe-Seyler, 1992, 373, 441-446.	1.4	16
144	Characterization and Structure of Pineapple Stem Inhibitor of Cysteine Proteinases. Biological Chemistry Hoppe-Seyler, 1992, 373, 459-464.	1.4	16

#	Article	IF	CITATIONS
145	A Pre-Steady-State Kinetic Analysis of Substrate Binding to Human Recombinant Deoxycytidine Kinase:Â A Model for Nucleoside Kinase Actionâ€. Biochemistry, 1999, 38, 8555-8561.	1.2	16
146	Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin. Biochimie, 2012, 94, 719-726.	1.3	16
147	Stefin A-functionalized liposomes as a system for cathepsins S and L-targeted drug delivery. Biochimie, 2019, 166, 94-102.	1.3	16
148	Cysteine cathepsins are not involved in Fas/CD95 signalling in primary skin fibroblasts. FEBS Letters, 2007, 581, 5185-5190.	1.3	15
149	Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation. Frontiers in Molecular Neuroscience, 2012, 5, 93.	1.4	15
150	The complete primary structure of bovine stefin B. FEBS Letters, 1992, 298, 237-239.	1.3	14
151	N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2254-2266.	1.9	14
152	Human cathepsin F: expression in baculovirus system, characterization and inhibition by protein inhibitiors. Biological Chemistry, 2004, 385, 505-9.	1.2	12
153	Proteolysis of Gingival Keratinocyte Cell Surface Proteins by Gingipains Secreted From Porphyromonas gingivalis – Proteomic Insights Into Mechanisms Behind Tissue Damage in the Diseased Gingiva. Frontiers in Microbiology, 2020, 11, 722.	1.5	12
154	Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. International Journal of Molecular Sciences, 2021, 22, 997.	1.8	12
155	Cystatin C Deficiency Increases LPS-Induced Sepsis and NLRP3 Inflammasome Activation in Mice. Cells, 2021, 10, 2071.	1.8	12
156	Activation processing of cathepsin H impairs recognition by its propeptide. Biological Chemistry, 2005, 386, 941-7.	1.2	11
157	Increased nucleolar localization of SpiA3G in classically but not alternatively activated macrophages. FEBS Letters, 2010, 584, 2201-2206.	1.3	10
158	Upregulation of Mitochondrial Redox Sensitive Proteins in LPS-Treated Stefin B-Deficient Macrophages. Cells, 2019, 8, 1476.	1.8	10
159	Comparative study of the differential cell death protecting effect of various ROS scavengers. Biological Chemistry, 2019, 400, 149-160.	1.2	9
160	Human cathepsin X/Z is a biologically active homodimer. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140567.	1.1	9
161	Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Communication and Signaling, 2021, 19, 108.	2.7	9
162	Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials. Nanomaterials, 2022, 12, 650.	1.9	9

#	Article	IF	CITATIONS
163	Cellular localization of MAGI-1 caspase cleavage products and their role in apoptosis. Biological Chemistry, 2007, 388, 1195-1198.	1.2	8
164	Murine and human cathepsin B exhibit similar properties: possible implications for drug discovery. Biological Chemistry, 2009, 390, 175-179.	1.2	8
165	Cysteine cathepsins are not critical for TNF-α-induced cell death in T98G and U937 cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1372-1377.	1.1	8
166	Measuring Cysteine Cathepsin Activity to Detect Lysosomal Membrane Permeabilization. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot087114.	0.2	8
167	Use of Non-Natural Amino Acids for the Design and Synthesis of a Selective, Cell-Permeable MALT1 Activity-Based Probe. Journal of Medicinal Chemistry, 2020, 63, 3996-4004.	2.9	8
168	Tissue Engineering Meets Nanotechnology: Molecular Mechanism Modulations in Cornea Regeneration. Micromachines, 2021, 12, 1336.	1.4	8
169	The high stability of cruzipain against pH-induced inactivation is not dependent on its C-terminal domain. FEBS Letters, 2000, 469, 29-32.	1.3	7
170	Regulating Cysteine Protease Activity: Essential Role of Protease Inhibitors as Guardians and Regulators. Medicinal Chemistry Reviews Online, 2005, 2, 283-297.	0.1	7
171	Cleavage of the myristoylated alanine-rich C kinase substrate (MARCKS) by cysteine cathepsins in cells and tissues of stefin B-deficient mice. Biological Chemistry, 2007, 388, 847-852.	1.2	7
172	Biochemical Characterization and Substrate Specificity of Autophagin-2 from the Parasite Trypanosoma cruzi. Journal of Biological Chemistry, 2015, 290, 28231-28244.	1.6	7
173	Tumor Necrosis Factorâ€Î± Induced Apoptosis in U937 Cells Promotes Cathepsin Dâ€Independent Stefin B Degradation. Journal of Cellular Biochemistry, 2017, 118, 4813-4820.	1.2	7
174	Evaluation of novel cathepsin-X inhibitors in vitro and in vivo and their ability to improve cathepsin-B-directed antitumor therapy. Cellular and Molecular Life Sciences, 2022, 79, 34.	2.4	6
175	Do lysosomes induce cell death?. IUBMB Life, 2006, 58, 493-494.	1.5	4
176	Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsinâ€B Inhibitor. Angewandte Chemie, 2014, 126, 10241-10245.	1.6	3
177	A novel caspase-7 specific monoclonal antibody. Immunology Letters, 2005, 98, 167-169.	1.1	1
178	Editorial [Hot Topic: Recent Advances and Future Prospect in Protease Targeting (Executive Editor: B.) Tj ETQq0 (0 0 rgBT /0	Dverlock 10 T
179_	Editorial [Hot Topic: Recent Advances and Future Prospect in Protease Targeting (Executive Editor: B.) Tj ETQq1	1 0,78431	4 rgBT /Overl

Murine and human cathepsin B exhibit similar properties: possible implications for drug discovery. Biological Chemistry, 2009, 390, 517-517. 180

1.2 1

#	Article	IF	CITATIONS
181	Altered Expression of Peroxiredoxins in Mouse Model of Progressive Myoclonus Epilepsy upon LPS-Induced Neuroinflammation. Antioxidants, 2021, 10, 357.	2.2	1
182	Application of Crumpled Aluminum Hydroxide Nanostructures for Cancer Treatment. Springer Tracts in Mechanical Engineering, 2021, , 211-223.	0.1	1
183	Lysosomal Cysteine Proteases and Their Protein Inhibitor. , 2002, , 227-240.		0
184	Vito Turk – 30 Years of Research on Cysteine Proteases and Their Inhibitors. Biological Chemistry, 2003, 384, 833-6.	1.2	0
185	Plasma Glutamate Carboxypeptidase. , 2013, , 1707-1710.		0
186	Innenrücktitelbild: Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsinâ€B Inhibitor (Angew. Chem. 38/2014). Angewandte Chemie, 2014, 126, 10417-10417.	1.6	0
187	Mitochondria, Apoptosis and Cancer (MAC) 2017. Biological Chemistry, 2019, 400, 123-124.	1.2	0
188	Dipeptidyl-Peptidase I. , 2013, , 1968-1974.		0
189	Cytosolic Cathepsin Inhibitor Stefin B (Cystatin B) Regulate Caspaseâ€11 Expression. FASEB Journal, 2015, 29, LB191.	0.2	0
190	Improved Cathepsin Probes for Sensitive Molecular Imaging. Molecules, 2022, 27, 842.	1.7	0