Jan Degreve

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6705441/jan-degreve-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 6,358 32 79 g-index

89 7,115 7.4 5.89 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
88	Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making. <i>Renewable Energy</i> , 2021 , 170, 800-810	8.1	7
87	A theoretical model for the prediction of the minimum ignition energy of dust clouds. <i>Journal of Loss Prevention in the Process Industries</i> , 2021 , 73, 104594	3.5	1
86	How Photocatalyst Dosage and Ultrasound Application Influence the Photocatalytic Degradation Rate of Phenol in Water: Elucidating the Mechanisms Behind. <i>Water (Switzerland)</i> , 2020 , 12, 1672	3	5
85	Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: a review. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 444-481	4.2	29
84	The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultraviolet-Induced Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17175-17179	16.4	31
83	A model for the minimum ignition energy of dust clouds. <i>Chemical Engineering Research and Design</i> , 2019 , 121, 43-49	5.5	18
82	An energy-friendly alternative in the large-scale production of soybean oil. <i>Journal of Environmental Management</i> , 2019 , 230, 234-244	7.9	8
81	Conceptual model-based design and environmental evaluation of waste solvent technologies: Application to the separation of the mixture acetone-water. <i>Separation Science and Technology</i> , 2018 , 53, 1791-1810	2.5	6
80	Energy analysis of a particle suspension solar combined cycle power plant. <i>Energy Conversion and Management</i> , 2018 , 163, 292-303	10.6	39
79	A pilot-scale coupling of ozonation and biodegradation of 2,4-dichlorophenol-containing wastewater: The effect of biomass acclimation towards chlorophenol and intermediate ozonation products. <i>Journal of Cleaner Production</i> , 2017 , 161, 1432-1441	10.3	26
78	Comparing glow discharge plasma and ultrasound treatment for improving aerobic respiration of activated sludge. <i>Water Research</i> , 2017 , 122, 207-215	12.5	10
77	Process safety education and training academic education as a foundation for other process safety initiatives on education. <i>Process Safety Progress</i> , 2017 , 36, 414-421	1	4
76	Use of Particle Heat Carriers in the Stirling Engine Concept. <i>Energy Technology</i> , 2016 , 4, 401-408	3.5	12
75	Retrofitting of extractive distillation columns with high flux, low separation factor membranes: A way to reduce the energy demand?. <i>Chemical Engineering Research and Design</i> , 2016 , 109, 127-140	5.5	18
74	Purification of biodiesel using a membrane contactor: LiquidIIquid extraction. <i>Fuel Processing Technology</i> , 2016 , 142, 352-360	7.2	24
73	Comparison between exergy and energy analysis for biodiesel production. <i>Energy</i> , 2016 , 98, 135-145	7.9	19
72	Thermal energy storage: Recent developments and practical aspects. <i>Progress in Energy and Combustion Science</i> , 2016 , 53, 1-40	33.6	417

(2014-2016)

71	Particle circulation loops in solar energy capture and storage: GasBolid flow and heat transfer considerations. <i>Applied Energy</i> , 2016 , 161, 206-224	10.7	58
70	Powder attrition in gas fluidized beds. <i>Powder Technology</i> , 2016 , 287, 1-11	5.2	33
69	Thermochemical Energy Storage for Power Generation on Demand. <i>Energy Technology</i> , 2016 , 4, 341-35.	23.5	19
68	Volume-of-fluid simulations of bubble dynamics in a vertical Hele-Shaw cell. <i>Physics of Fluids</i> , 2016 , 28, 053304	4.4	18
67	The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. <i>Chemical Engineering Journal</i> , 2015 , 280, 728-736	14.7	58
66	Operation Diagram of Circulating Fluidized Beds (CFBs). <i>Procedia Engineering</i> , 2015 , 102, 1092-1103		18
65	Thermo-mechanical analysis of copper-encapsulated NaNO3KNO3. <i>Chemical Engineering Research and Design</i> , 2015 , 93, 224-231	5.5	24
64	The Voidage in a CFB Riser as Function of Solids Flux and Gas Velocity. <i>Procedia Engineering</i> , 2015 , 102, 1112-1122		17
63	Pd-catalyzed decarboxylation of glutamic acid and pyroglutamic acid to bio-based 2-pyrrolidone. <i>Green Chemistry</i> , 2015 , 17, 2263-2270	10	38
62	A cascaded pervaporation process for dehydration of acetic acid. <i>Chemical Engineering Science</i> , 2014 , 105, 208-212	4.4	13
61	Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. <i>Bioresource Technology</i> , 2014 , 171, 44-9	11	101
60	Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. <i>Chemical Society Reviews</i> , 2014 , 43, 7917-53	58.5	314
59	Latent heat storage with tubular-encapsulated phase change materials (PCMs). <i>Energy</i> , 2014 , 76, 66-72	7.9	84
58	The design of cyclonic pre-heaters in suspension cement kilns. <i>International Journal of Sustainable Engineering</i> , 2014 , 7, 307-312	3.1	12
57	Choking Affects the Operation Diagram of a CFB Riser. <i>Journal of Powder Technology</i> , 2014 , 2014, 1-6		3
56	Photovoltaics: reviewing the European Feed-in-Tariffs and changing PV efficiencies and costs. <i>Scientific World Journal, The</i> , 2014 , 2014, 404913	2.2	12
55	Wall-to-Bed Heat Transfer at Minimum Gas-Solid Fluidization. <i>Journal of Powder Technology</i> , 2014 , 2014, 1-8		3
54	Experimental and numerical study of buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell. <i>Physics of Fluids</i> , 2014 , 26, 123303	4.4	22

53	The convection heat transfer coefficient in a Circulating Fluidized Bed (CFB). <i>Advanced Powder Technology</i> , 2014 , 25, 710-715	4.6	24
52	Concentrated solar power plants: Review and design methodology. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 22, 466-481	16.2	630
51	Investigation of design parameters in ultrasound reactors with confined channels. <i>Ultrasonics Sonochemistry</i> , 2013 , 20, 1345-52	8.9	23
50	COD and AOX Removal and Biodegradability Assessment for Fenton and O3/UV Oxidation Processes: A Case Study from a Graphical Industry Wastewater. <i>Ozone: Science and Engineering</i> , 2013 , 35, 16-21	2.4	9
49	Performance of molten salt solar power towers in Chile. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 053142	2.5	22
48	Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. <i>Applied Energy</i> , 2013 , 109, 505-513	10.7	49
47	Selective Hydroalkoxylation of 1-Hexene with 1-Propanol and 1-Butanol over Zeolite Beta Catalyst. <i>ChemCatChem</i> , 2013 , 5, 576-581	5.2	9
46	Modeling and geometry optimization of photochemical reactors: Single- and multi-lamp reactors for UVH2O2 AOP systems. <i>Chemical Engineering Science</i> , 2013 , 96, 174-189	4.4	10
45	Separation of methanolfi-butyl acetate mixtures by pervaporation: Potential of 10 commercial membranes. <i>Journal of Membrane Science</i> , 2013 , 429, 1-12	9.6	72
44	Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. <i>Progress in Energy and Combustion Science</i> , 2013 , 39, 383-402	33.6	116
43	Kinetic Study and Scaleup of the Oxidation of Nanofiltration Retentates by O3. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 7056-7066	3.9	5
42	Effects of ultrasonic pre-treatment on sludge characteristics and anaerobic digestion. <i>Water Science and Technology</i> , 2012 , 66, 2284-90	2.2	25
41	Evaluation of peroxide based advanced oxidation processes (AOPs) for the degradation of ibuprofen in water. <i>Desalination and Water Treatment</i> , 2012 , 50, 189-197		13
40	Considerations on the Use of Nanofiltration for Solvent Purification in the Oil Industry. <i>JAOCS, Journal of the American Oil Chemistsi Society,</i> 2012 , 89, 959-960	1.8	4
39	A reduced order rate based model for distillation in packed columns: Dynamic simulation and the differentiation index problem. <i>Chemical Engineering Science</i> , 2012 , 68, 401-412	4.4	7
39	A reduced order rate based model for distillation in packed columns: Dynamic simulation and the	4·4 9.6	7
	A reduced order rate based model for distillation in packed columns: Dynamic simulation and the differentiation index problem. <i>Chemical Engineering Science</i> , 2012 , 68, 401-412 Preparation of solvent stable polyphenylsulfone hollow fiber nanofiltration membranes. <i>Journal of</i>		95

(2007-2011)

35	Performance of Nanofiltration Membranes for Solvent Purification in the Oil Industry. <i>JAOCS, Journal of the American Oil Chemistsi Society</i> , 2011 , 88, 1255-1261	1.8	62	
34	Determination of activities in membrane processes: The UNIQUAC model expressed in mole and mass fractions. <i>AICHE Journal</i> , 2011 , 57, 1889-1896	3.6	4	
33	Physicochemical characterization of solute retention in solvent resistant nanofiltration: the effect of solute size, polarity, dipole moment, and solubility parameter. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14507-17	3.4	31	
32	Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry: experiments and simulation. <i>Green Chemistry</i> , 2011 , 13, 3476	10	77	
31	Parameter identification and modeling of the biochemical methane potential of waste activated sludge. <i>Environmental Science & Environmental &</i>	10.3	33	
30	Reply to Comment on P arameter Identification and Modeling of the Biochemical Methane Potential of Waste Activated Sludge[]Environmental Science & 2017, 45, 7598-7599	10.3		
29	Comparison of Different Oxidation Methods for Recalcitrance Removal of Landfill Leachate. <i>Ozone: Science and Engineering</i> , 2011 , 33, 294-300	2.4	20	
28	Performance of Solvent-Pretreated Polyimide Nanofiltration Membranes for Separation of Dissolved Dyes from Toluene. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 9330-9338	3.9	43	
27	Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 13333-42	3.6	108	
26	Adsorption of Pure Vapor Species on Microporous Silica Membranes and Silica Pellets. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9416-9423	3.8	4	
25	Physicochemical characterization of transport in nanosized membrane structures. <i>ChemPhysChem</i> , 2010 , 11, 404-11	3.2	26	
24	Pervaporation of binary water lcohol and methanol lcohol mixtures through microporous methylated silica membranes: Maxwell Stefan modeling. <i>Computers and Chemical Engineering</i> , 2010 , 34, 1775-1788	4	33	
23	Comparison of pressure driven transport of ethanol/n-hexane mixtures through dense and microporous membranes. <i>Chemical Engineering Science</i> , 2009 , 64, 3914-3927	4.4	32	
22	General model for prediction of solvent permeation through organic and inorganic solvent resistant nanofiltration membranes. <i>Journal of Membrane Science</i> , 2009 , 334, 43-49	9.6	81	
21	Ultrasonically enhanced anaerobic digestion of waste activated sludge. <i>International Journal of Sustainable Engineering</i> , 2008 , 1, 94-104	3.1	32	
20	Principles and potential of the anaerobic digestion of waste-activated sludge. <i>Progress in Energy and Combustion Science</i> , 2008 , 34, 755-781	33.6	1880	
19	Simulation of a hybrid pervaporation distillation process. <i>Computers and Chemical Engineering</i> , 2008 , 32, 1135-1146	4	52	
18	Transport of Binary Mixtures in Pervaporation through a Microporous Silica Membrane: Shortcomings of Fickian Models. <i>Separation Science and Technology</i> , 2007 , 42, 1-23	2.5	35	

17	Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. <i>Journal of Hazardous Materials</i> , 2007 , 146, 577-81	12.8	75
16	Spray-agglomeration of NPK-fertilizer in a rotating drum granulator. <i>Powder Technology</i> , 2006 , 163, 18	8- ქ . 9 5	13
15	Transport of pure components in pervaporation through a microporous silica membrane. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 5216-22	3.4	47
14	Pervaporation of water lcohol mixtures and acetic acid water mixtures. <i>Chemical Engineering Science</i> , 2005 , 60, 1583-1590	4.4	119
13	Pervaporation of Binary and Ternary Mixtures of Water with Methanol and/or Ethanol. <i>Separation Science and Technology</i> , 2005 , 39, 563-580	2.5	24
12	Quality Control in a Semi-continuous Polymer Production Process. <i>Quality Engineering</i> , 2004 , 16, 347-3	57 _{1.4}	1
11	VOCBir separations using gas membranes. <i>Journal of Chemical Technology and Biotechnology</i> , 2003 , 78, 294-297	3.5	20
10	Entrained phase adsorption of PCDD/F from incinerator flue gases. <i>Environmental Science & Environmental Science & Technology</i> , 2003 , 37, 1219-24	10.3	44
9	The interaction of solute transfer, contaminants and drop break-up in rotating disc contactors: Part I. Correlation of drop breakage probabilities. <i>Canadian Journal of Chemical Engineering</i> , 1997 , 75, 1046-	-1 03 5	28
8	The Interaction of solute transfer, contaminants and dro break-up in rotating disc contactors: Part II. The coupling of the mass transfer and breakage processes via interfacial tension. <i>Canadian Journal of Chemical Engineering</i> , 1997 , 75, 1056-1066	2.3	13
7	Simulation of a slagging incineration process. <i>Computers and Chemical Engineering</i> , 1991 , 15, 297-304	4	1
6	REACTION FRONT PROPAGATION CHARACTERISTICS IN NON-CATALYTIC EXOTHERMIC GAS-SOLID SYSTEMS. <i>Chemical Engineering Communications</i> , 1990 , 92, 199-224	2.2	15
5	Study of gas-solid, heterogeneous, exothermic, noncatalytic reactions in a flow regime. <i>Industrial & Engineering Chemistry Research</i> , 1988 , 27, 513-518	3.9	9
4	MODELING OF STRONGLY EXOTHERMIC REACTION ON A SUPERCOMPUTER. <i>Chemical Engineering Communications</i> , 1987 , 58, 105-118	2.2	4
3	Modeling of exothermic solid-solid noncatalytic reactions. <i>Industrial & Discourse Industrial & Discourse Industri</i>	3.9	73
2	Use of 2-D-adaptive mesh in simulation of combustion front phenomena. <i>Computers and Chemical Engineering</i> , 1987 , 11, 749-755	4	15
1	Propagation of reaction fronts in exothermic heterogeneous noncatalytic systems solid-solid and solid-gas. <i>Chemical Engineering Science</i> , 1986 , 41, 877-882	4.4	6