
PaweÅ, Mateusz Nowak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705359/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC - Trends in Analytical Chemistry, 2021, 138, 116223.	11.4	290
2	What Color Is Your Method? Adaptation of the RGB Additive Color Model to Analytical Method Evaluation. Analytical Chemistry, 2019, 91, 10343-10352.	6.5	147
3	Application of capillary electrophoresis in determination of acid dissociation constant values. Journal of Chromatography A, 2015, 1377, 1-12.	3.7	62
4	Overview of the three multicriteria approaches applied to a global assessment of analytical methods. TrAC - Trends in Analytical Chemistry, 2020, 133, 116065.	11.4	47
5	Determination of acid dissociation constant of 20 coumarin derivatives by capillary electrophoresis using the amine capillary and two different methodologies. Journal of Chromatography A, 2016, 1446, 149-157.	3.7	34
6	Origin of Remarkably Different Acidity of Hydroxycoumarins—Joint Experimental and Theoretical Studies. Journal of Physical Chemistry B, 2017, 121, 4554-4561.	2.6	29
7	Determination of acid dissociation constants of warfarin and hydroxywarfarins by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2015, 112, 89-97.	2.8	28
8	An overview of onâ€line systems using drug metabolizing enzymes integrated into capillary electrophoresis. Electrophoresis, 2013, 34, 2604-2614.	2.4	26
9	Improving repeatability of capillary electrophoresis—a critical comparison of ten different capillary inner surfaces and three criteria of peak identification. Analytical and Bioanalytical Chemistry, 2017, 409, 4383-4393.	3.7	26
10	Simulation of drug metabolism. TrAC - Trends in Analytical Chemistry, 2014, 59, 42-49.	11.4	25
11	Analytical aspects of achiral and cyclodextrin-mediated capillary electrophoresis of warfarin and its two main derivatives assisted by theoretical modeling. Journal of Chromatography A, 2015, 1377, 106-113.	3.7	25
12	Modulation of pK _a by cyclodextrins; subtle structural changes induce spectacularly different behaviors. RSC Advances, 2015, 5, 77545-77552.	3.6	19
13	Seven Approaches to Elimination of the Inherent Systematic Errors in Determination of Electrophoretic Mobility by Capillary Electrophoresis. Analytical Chemistry, 2017, 89, 3630-3638.	6.5	19
14	Thermodynamics of acid-base dissociation of several cathinones and 1â€phenylethylamine, studied by an accurate capillary electrophoresis method free from the Joule heating impact. Journal of Chromatography A, 2018, 1539, 78-86.	3.7	18
15	Simultaneous enantioseparation of methcathinone and two isomeric methylmethcathinones using capillary electrophoresis assisted by 2â€hydroxyethylâ€Î²â€cyclodextrin. Electrophoresis, 2018, 39, 2406-2409.	2.4	18
16	Fast separation of warfarin and 7â€hydroxywarfarin enantiomers by cyclodextrinâ€assisted capillary electrophoresis. Journal of Separation Science, 2014, 37, 2625-2631.	2.5	17
17	Simultaneous quantification of food colorants and preservatives in sports drinks by the high performance liquid chromatography and capillary electrophoresis methods evaluated using the red-green-blue model. Journal of Chromatography A, 2020, 1620, 460976.	3.7	17
18	Acidity of substituted cathinones studied by capillary electrophoresis using the standard and fast alternative approaches. Talanta, 2018, 180, 193-198.	5.5	15

PaweÅ, Mateusz Nowak

#	Article	IF	CITATIONS
19	CE-MS and GC-MS as "Green―and Complementary Methods for the Analysis of Biogenic Amines in Wine. Food Analytical Methods, 2018, 11, 2614-2627.	2.6	14
20	Separation of 20 coumarin derivatives using the capillary electrophoresis method optimized by a series of Doehlert experimental designs. Talanta, 2017, 167, 714-724.	5.5	13
21	Capillary electrophoresis as a tool for a costâ€effective assessment of the activity of plant membrane enzyme chlorophyllase. Electrophoresis, 2013, 34, 3341-3344.	2.4	12
22	Enthalpy–entropy relations in the acid–base equilibrium of warfarin and 10-hydroxywarfarin; joint experimental and theoretical studies. RSC Advances, 2015, 5, 74562-74569.	3.6	12
23	Assessment and Comparison of the Overall Analytical Potential of Capillary Electrophoresis and High-Performance Liquid Chromatography Using the RGB Model: How Much Can We Find Out?. Chromatographia, 2020, 83, 1133-1144.	1.3	12
24	Enhancing effectiveness of capillary electrophoresis as an analytical tool in the supramolecular acidity modification. Analytical and Bioanalytical Chemistry, 2017, 409, 3633-3643.	3.7	11
25	Separation of iron-free and iron-saturated forms of transferrin and lactoferrin via capillary electrophoresis performed in fused-silica and neutral capillaries. Journal of Chromatography A, 2013, 1321, 127-132.	3.7	10
26	Acidity constant of pH indicators in the supramolecular systems studied by two CE-based methods compared using the RGB additive color model. Analytical and Bioanalytical Chemistry, 2020, 412, 577-588.	3.7	10
27	Selective separation of ferric and non-ferric forms of human transferrin by capillary micellar electrokinetic chromatography. Journal of Chromatography A, 2014, 1341, 73-78.	3.7	9
28	Cyclodextrin-induced acidity modification of substituted cathinones studied by capillary electrophoresis supported by density functional theory calculations. Journal of Chromatography A, 2018, 1580, 142-151.	3.7	9
29	The Acid-Base/Deprotonation Equilibrium Can Be Studied with a MicroScale Thermophoresis (MST). Molecules, 2022, 27, 685.	3.8	9
30	Cyclodextrin-assisted enantioseparation of warfarin and 10-hydroxywarfarin by capillary electrophoresis studied from the analytical and thermodynamic points of view. Journal of Pharmaceutical and Biomedical Analysis, 2016, 126, 60-65.	2.8	8
31	Capillary coating as an important factor in optimization of the off-line and on-line MEKC assays of the highly hydrophobic enzyme chlorophyllase. Analytical and Bioanalytical Chemistry, 2017, 409, 1493-1501.	3.7	7
32	Mn 3+ -saturated bovine lactoferrin as a new complex with potential prebiotic activities for dysbiosis treatment and prevention – On the synthesis, chemical characterization and origin of biological activity. Journal of Functional Foods, 2017, 38, 264-272.	3.4	7
33	On-line coupling between capillary electrophoresis and microscale thermophoresis (CE–MST); the proof-of-concept. Analyst, The, 2018, 143, 4854-4859.	3.5	7
34	Minimizing the impact of Joule heating as a prerequisite for the reliable analysis of metalâ€protein complexes by capillary electrophoresis. Journal of Chromatography A, 2017, 1495, 83-87.	3.7	6
35	Flow variation as a factor determining repeatability of the internal standard-based qualitative and quantitative analyses by capillary electrophoresis. Journal of Chromatography A, 2018, 1548, 92-99.	3.7	6
36	Comprehensive Assessment of Flow and Other Analytical Methods Dedicated to the Determination of Zinc in Water. Molecules, 2021, 26, 3914.	3.8	5

#	Article	IF	CITATIONS
37	A simple method for assessment and minimization of errors in determination of electrophoretic or electroosmotic mobilities and velocities associated with the axial electric field distortion. Electrophoresis, 2015, 36, 2994-3001.	2.4	3
38	A comparative study of various physicochemically modified capillaries used in CE technique for the three distinct analytical purposes. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1020, 134-141.	2.3	3
39	A Perspective of the Comprehensive and Objective Assessment of Analytical Methods Including the Greenness and Functionality Criteria: Application to the Determination of Zinc in Aqueous Samples. Frontiers in Chemistry, 2021, 9, 753399.	3.6	3
40	Influence of pH measurement inaccuracy on the values of acidity constant determined on the basis of electrophoretic and thermophoretic data. Microchemical Journal, 2022, 181, 107689.	4.5	3
41	A sustainable approach for the stability study of psychotropic substances using vitreous humor and liver as alternative matrices. Analytical and Bioanalytical Chemistry, 2022, 414, 6355-6370.	3.7	2
42	Differentiation of isomeric metabolites of carbamazepine based on acid-base properties; Experimental vs theoretical approach. Journal of Chromatography A, 2021, 1651, 462275.	3.7	1
43	An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting. Molecules, 2021, 26, 6268.	3.8	1
44	Capillary Electrophoresis and High Performance Liquid Chromatography in the Context of Selected Bioanalytical Applications – a comparison using the RGB Color Model. , 2022, , 863-878.		0